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Abstract 

This paper is concerned with an old question: Will the firms in an oligopoly have incentives 
to merge to monopoly and will the monopoly be stable? To answer this question, we motivate 
and introduce a new core concept for a general partition function game and then prove 
stability of the merger-to-monopoly by applying the new concept to an oligopoly in partition 
function game form. Unlike previous core concepts, the new core concept, labelled the 
strong-core, neither assumes formation of any particular partition subsequent to a deviation 
nor imposes an exogenous criterion for selecting among the partitions that can possibly form. 
The paper shows that an oligopoly with any number of homogeneous firms without capacity 
constraints admits a nonempty strong-core and so does an oligopoly of not necessarily 
homogeneous firms with capacity constraints equal to their Nash equilibrium outputs. These 
results imply that an oligopoly will become a stable monopoly both in the long and short 
runs, unless prevented by law.        
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1. Introduction 

Numerous studies have focused on conditions under which horizontal mergers (i.e. forming 

coalitions of two or more firms) in a Cournot oligopoly can be profitable for participating 

firms. Notable contributions include Salant et al. (1983), Perry and Porter (1985), Deneckere 

and Davidson (1985), and Farrell and Shapiro (1990), among others. Most of these studies 

focus on incentives of oligopolistic firms to merge to monopoly. In particular, Deneckere and 

Davidson conclude: “… short of antitrust policy, the industry would concentrate almost 

completely towards monopoly.” However, the question of stability of mergers, especially of 

the merger-to-monopoly, has been somewhat ignored, except by Rajan (1989).      

     In this paper I argue that mere profitability of a merger does not guarantee that the merger 

will be stable. Although oligopolistic firms do have an incentive to merge into a single multi 

plant firm because of higher monopoly profits, but still some firm or coalition of firms may 

decide not to merge to monopoly as it may conclude that its greatest profit potential lies in 

remaining separate. Thus, the grand coalition, though profitable, can be stable only if the 

monopoly profits can be split in a way that no firm or coalition of firms will have incentive to 

leave the grand coalition and become an independent market player. As will be shown, this 

depends on whether or not the core of the oligopoly game is nonempty. Indeed, Maskin 

(2003, p.3) asserts that if there are games in which the grand coalition may not be stable it is 

only among coreless games that we will find them. In other words, a nonempty core is a 

sufficient condition for stability of the grand coalition and an empty core is a necessary 

condition for its instability. 

     This means that if an oligopoly game admits a nonempty core, then we need to look no 

further as that implies that the merger-to-monopoly will be stable. But the answer is a lot 

more complicated than this because the payoff of a coalition leaving the grand coalition in an 

oligopoly game, unlike a characteristic function game, depends not only on the actions taken 

by it, but also on the reaction of the firms left behind. Accordingly, all existing core concepts 

for oligopoly games make one or another ad hoc assumption regarding the partition (of firms 

into coalitions) that may form subsequent to a deviation from the grand coalition. Hence, 

there are many definitions of the core depending on the assumption made regarding the 

reaction of the firms left behind – the so-called “market’s ethos” in Rajan (1989). One simple 

definition of the core is given by assuming that subsequent to a deviation by a coalition from 

the grand coalition, the remaining firms break apart into singletons (Chander and Tulkens, 
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1997). Another equally simple definition is given by assuming that the remaining firms form 

one single coalition of their own (Maskin, 2003). However, none of these core concepts, 

though used in many applications, has yet become widely accepted as the core concept for 

partition function games mainly because they make one or another ad hoc assumption 

regarding the partition that may emerge subsequent to a deviation. Similar criticisms can be 

made against the classical 𝛼- and 𝛽- cores that not only assume formation of a single 

coalition by the players left behind, but also assume predatory behaviour on their part with no 

concern how this may affect their own payoffs. 

     The paper formulates an oligopoly as a strategic game and shows that it can be converted 

into a unique partition function game (Thrall and Lucas, 1963) by proving existence of a 

unique Nash equilibrium for each induced game in which each coalition in each partition of 

firms in the industry acts as one single player and the payoff to each coalition in a partition is 

the sum of profits that accrue to each of its members. As will be made clear in Section 3.1, 

the basic approach in the paper is same as in Salant et al. (1983) in that outputs, prices, and 

profits are determined endogenously in exactly the same way. Only the question addressed is 

different. Thus the analysis in this paper complements that in Salant et al. (1983) among 

others. 

    	Since an oligopoly game can be converted into a partition function game, the paper 

motivates and introduces a new core concept in terms of a general partition function game 

and then applies it to the partition function game form of the oligopoly game. Unlike previous 

core concepts, this new concept, labelled the strong-core, neither assumes formation of any 

particular partition nor imposes an exogenous criterion for selecting among the partitions that 

can possibly form subsequent to a deviation. Thus, the strong-core seems to nicely settle the 

long standing debate on which core concept to use for partition function games in general and 

oligopoly games in particular. To be specific, the strong-core is the set of all payoff vectors 

that are feasible for the grand coalition and such that for every deviating coalition and every 

partition containing the deviating coalition that may possibly form either the deviating 

coalition is worse-off or some non-singleton coalition in the partition is worse-off. 

     The strong-core, by definition, does not rule out formation of any partition subsequent to a 

deviation except that the partition must include the deviating coalition. It is consistent with 

the traditional core in the sense that the strong-core reduces to the traditional core if the worth 

of every coalition is independent of the partition to which it belongs and the game is 
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adequately represented by a characteristic function. As will be seen, it is also nicely related to 

the familiar 𝛾- and 𝛿- cores in that the strong core is generally smaller than the 𝛾-core and for 

games with “positive externalities” including the oligopoly games, the strong-core is larger 

than the 𝛿-core.  

     After introducing and justifying the strong-core for a general partition function game, I 

show that an oligopoly game admits a nonempty strong-core. More specifically, I show that 

an oligopoly with any number of homogenous firms without capacity constraints and 

increasing marginal costs of production admits a nonempty strong-core. I interpret the unique 

Nash equilibrium of an oligopoly as the equilibrium that may prevail if a strong antitrust 

policy is in place. I then show that if each firm in an oligopoly faces a capacity constraint 

equal to its Nash equilibrium output, then the corresponding partition function form of the 

oligopoly is partially superadditive and, therefore, the strong-core of an oligopoly with 

capacity constraints is equal to the 𝛾-core and is nonempty. Thus, both in the long run when 

production capacities can be expanded and in the short run when they cannot be, an oligopoly 

will turn into a stable monopoly unless an antitrust policy is in place.  

     Since the strong-core seems to be of general interest, the paper offers a number of 

interpretations and justifications for it. For one, it introduces a notion of farsighted 

dominance and interprets and justifies the strong-core by showing that the strong-core payoff 

vectors are such that deviations from a strong-core payoff vector are farsightedly deterred by 

the strong-core payoff vector itself. That is in any partition that may possibly form 

subsequent to a deviation the deviating coalition is either immediately worse-off or not 

farsightedly better-off.   

     The contents of this paper are as follows: Section 2 motivates and introduces the strong -

core and compares it with other core concepts. It shows that a well-known class of symmetric 

games admit nonempty strong-cores.  Section 3 introduces a model of an oligopoly and 

proves that an oligopoly with any finite number of homogeneous firms and increasing 

marginal cost of production admits a nonempty strong-core and so does an oligopoly with 

any finite number of not necessarily homogeneous firms if each firm faces a capacity 

constraint equal to its Nash equilibrium output. Section 4 introduces a notion of 

farsightedness and offers an additional justification/interpretation for the strong core. Section 

5 draws the conclusion. 
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2. Core concepts for partition function games  

The purpose of this section is to first review the existing core concepts and then motivate and 

introduce a new core concept, to be called the strong-core, in the framework of a general 

partition function game. The next section applies this concept to an oligopoly by converting 

the oligopoly into a partition function game. 

     Let 𝑁 = 1,… , 𝑛 , 𝑛 ≥ 3, denote the set of players. A set  𝑃 = {𝑆0, … , 𝑆1} is a partition of 

𝑁 if 𝑆3 ∩ 𝑆5 = ∅ for all 𝑖, 𝑗 = 1,… ,𝑚, 𝑖 ≠ 𝑗, and ∪3<01 𝑆3 = 𝑁. I shall denote the finest 

partitions of 𝑁, 𝑆, and 𝑁\𝑆 by 𝑁 , 𝑆 , and  [𝑁\𝑆], respectively, the cardinality of set 𝑆 by 

𝑆 , and  (to save on notation) the singleton sets 𝑖 , {𝑆},{𝑁\𝑆}, and {𝑁} simply by 𝑖, 𝑆, 𝑁\𝑆, 

and 𝑁, respectively, whenever no confusion is possible. 

     A partition function is a real valued function of a coalition and a partition and denoted by 

𝑣 𝑆; 𝑃  where 𝑃 is a partition of 𝑁 and 𝑆 is a member of 𝑃. We shall denote a partition 

function game by a pair (𝑁, 𝑣). Since the worth of a coalition in a partition function game 

depends on the partition to which the coalition belongs, the partition function games are 

sometimes referred to as games with externalities. A partition function game in which the 

worth of every coalition is independent of the partition and depends only on the coalition can 

be considered as a special case and adequately represented by a characteristic function.  

     Given a partition function game 𝑁, 𝑣 , a payoff vector 𝑥 = (𝑥0, … , 𝑥F) is feasible for the 

grand coalition if 𝑥33∈H = 𝑣(𝑁; 𝑁 ). I shall denote a payoff vector that is feasible for the 

grand coalition simply by 𝑥, 𝑁 . Similarly, a payoff vector 𝑦 = (𝑦0, … , 𝑦F) is feasible for a 

partition 𝑃 = 𝑆0, … , 𝑆1  if 𝑦JJ∈KL = 𝑣 𝑆3; 𝑃 , 𝑖 = 1,… ,𝑚. Thus, in a payoff vector that is 

feasible for a partition, the payoff of each coalition in the partition is equal to its worth in the 

partition. I assume throughout the paper that each coalition in a partition is free to decide its 

part of the feasible payoff vector.  

     I shall denote a payoff vector that is feasible for a partition 𝑃 ≠ 𝑁, simply by 𝑦, 𝑃 , 𝑃 ≠

𝑁, and, as a tie-breaker rule, henceforth adopt the convention that the players strictly prefer to 

be members of the grand coalition than of a coalition in a partition other than the grand 

coalition even if their payoffs are the same, i.e., player 𝑖 is “better-off” as a member of the 

grand coalition with feasible payoff vector 𝑥 than as a member of a coalition in a partition 
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𝑃 ≠ 𝑁 with feasible payoff vector 𝑦 if 𝑥3 ≥ 𝑦3. But if 𝑃 = 𝑁, i.e., 𝑥 and 𝑦 are both feasible 

for the grand coalition and 𝑥3 = 𝑦3, then player 𝑖 is indifferent and not better-off.  

 

2.1 A new core concept 

The core, proposed by Gillies (1953) is a leading and influential solution concept for 

characteristic function games. But in a partition function game, unlike a characteristic 

function game, a deviating coalition has to take into account what other coalitions may form 

in the complement subsequent to its deviation, since its payoff/worth depends on the entire 

partition. Accordingly, all existing core concepts for a partition function game without fail 

make one or other ad hoc assumption concerning the coalitions that may form in the 

complement subsequent to a deviation – leading to alternative core concepts depending on 

the assumption made in this regard. In this subsection, I first review the two most widely used 

core concepts and then motivate and introduce a new core concept, to be called the strong-

core of a partition function game, which does not assume formation of any particular partition 

subsequent to a deviation. 

 

Definition 1 The 𝛾-core of a partition function game (𝑁, 𝑣) is the set of all payoff vectors 

(𝑥, 𝑁) such that for every deviating coalition 𝑆 and partition 𝑆, 𝑁\𝑆 , 𝑥33∈K ≥

𝑣(𝑆; 𝑆, [𝑁\𝑆] ).   

The 𝛾-core (Chander and Tulkens, 1997), motivated and introduced as an improvement 

over the classical 𝛼- and 𝛽- cores, assumes formation of a specific partition subsequent to a 

deviation from the grand coalition. In particular, it assumes that if coalition 𝑆 deviates from 

the grand coalition then the partition 𝑆, [𝑁\𝑆]  forms, and a 𝛾-core payoff vector is such that 

the deviating coalition 𝑆 is worse-off in this partition. But why should the complement of a 

deviating coalition break apart into singletons and not into some other partition?   

 

Definition 2 The 𝛿-core of a partition function game (𝑁, 𝑣) is the set of all payoff vectors 

(𝑥, 𝑁) such that in every deviating coalition 𝑆 and binary partition 𝑆, 𝑁\𝑆 , 𝑥33∈K ≥

𝑣(𝑆; 𝑆, 𝑁\𝑆 ).  

    The 𝛿-core (Maskin, 2003), like the 𝛾-core, also assumes formation of a specific partition 

subsequent to a deviation from the grand coalition. In particular, if coalition 𝑆 deviates from 

the grand coalition then the binary partition 𝑆, 𝑁\𝑆  forms, and a 𝛿-core payoff vector is 
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such that the deviating coalition 𝑆 is worse-off in this partition. But notice that the 𝛿-core 

actually requires not only the deviating coalition 𝑆 but also the complementary coalition 𝑁\𝑆 

to be worse-off, since a deviation by 𝑁\𝑆 from the grand coalition would result in the binary 

partition 𝑁\𝑆, 𝑆  in which the coalition 𝑁\𝑆, by definition of the 𝛿-core, must be worse-off. 

     It is worth noting that the 𝛾- and 𝛿- cores, as defined above, are not the same as similarly 

named concepts in Hart and Kurz (1983). In contrast to the approach in the present paper, 

Hart and Kurz (1983) do not require the sum of payoffs of the members of a coalition in a 

partition to be equal to the worth of the coalition in the partition. This comes about from their 

“efficiency” axiom according to which the worth of the grand coalition is assumed to accrue 

as the total payoff of all players in any partition. 

     Apart from the 𝛿-core, the classical 𝛼- and 𝛽- cores (Aumann, 1961) not only assume 

formation of the binary partition {𝑆, 𝑁\𝑆} subsequent to a deviation by coalition 𝑆, but also 

require the complementary coalition 𝑁\𝑆 to take actions that minimax or maximin the payoff 

of the deviating coalition 𝑆 without regard to its own payoff.1 There are also core concepts in 

which the partition that can be formed subsequent to a deviation is determined endogenously, 

but by imposing an exogenous selection criterion. These include the c-core in which the 

remaining players are assumed to form coalitions such that the payoff of the deviating 

coalition is minimized and the r-core in which the remaining players are assumed to form 

coalitions such that the sum of their payoffs is maximized.2 Similarly, Huang and Sjostorm 

(2003) and Koczy (2007) introduce a core concept, also named the r-core or the recursive 

core, by (exogenously) imposing a consistency requirement on the partition that can be 

formed by the players outside the deviating coalition. In an important paper, Bloch and van 

den Nouweland (2013) evaluate the various core concepts in terms of axiomatic properties of 

their implicit expectation formation rules. In sum, all existing core concepts for partition 

function games make one or other ad hoc assumption concerning the partition that may be 

formed subsequent to a deviation. In contrast, we propose, in this paper, a core concept that 

does not rule out formation of any partition subsequent to a deviation except that the partition 

should include the deviating coalition. 

 

																																																													
1 See Chander (2007) and Ray and Vohra (1997) for additional criticisms of the 𝛼- and 𝛽- cores.  
2 See Hafalir (2007) for formal definitions of both c- and r-cores. 
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Definition 3 The strong-core of a partition function game (𝑁, 𝑣) is the set of all payoff 

vectors (𝑥, 𝑁) such that for every deviating coalition 𝑆 and every partition 𝑃 ∋ 𝑆 either 

𝑣 𝑆; 𝑃 ≤ 𝑥33∈K 	or 𝑣(𝑇; 𝑃) ≤ 𝑥33∈R  for some non-singleton coalition 𝑇 ∈ 𝑃.  That is, in 

every partition that could possibly be formed by a deviating coalition either the deviating 

coalition itself is worse-off or some non-singleton coalition is worse-off. 

    This definition of the strong-core is mathematically clear and precise and comparable to 

definitions of the 𝛾- and 𝛿- cores in that the strong-core does not assume formation of any 

particular partition subsequent to a deviation by a coalition. Also, it does not select among the 

partitions that could possibly form subsequent to a deviation by imposing an exogenous 

criterion. Furthermore, it is consistent with the traditional core in the sense that the strong-

core reduces to the traditional core if the worth of every coalition is independent of the 

partition to which it belongs and the partition function is adequately represented by a 

characteristic function.  

     I now interpret and justify the strong-core. One interpretation is as follows: Suppose that a 

payoff vector (𝑥, 𝑁) is under discussion of the players and must be collectively accepted or 

rejected. Now suppose that a coalition 𝑆 thinks that it can do better than (𝑥, 𝑁) provided that 

a particular partition 𝑃 ≠ 𝑁, 𝑃 ∋ 𝑆, is formed and some payoff vector (𝑦0, … , 𝑦F) which is 

feasible for 𝑃 is chosen. But since in partition function games, unlike characteristic function 

games, the payoff of coalition 𝑆 depends on the entire coalition structure, it must convince all 

involved in the formation of partition 𝑃 to agree to the alternative proposal. The question is: 

what are the minimum conditions that the alternative proposal 𝑦, 𝑃 , 𝑃 ≠ 𝑁, must fulfil for 𝑆 

to succeed in convincing all involved. A necessary condition for the alternative proposal to 

be acceptable to all involved is that no non-singleton coalition in the partition 𝑃 should be 

worse-off.3 Clearly, this is not a sufficient condition for acceptability of an alternative 

proposal. The strong-core payoff vectors rule out possibility of any alternative proposal that 

satisfies even this necessary condition for acceptability, and are thus strongly stable.    

     It is instructive to consider an alternative definition of the core: the core is the set of all 

payoff vectors (𝑥, 𝑁) such that in every partition that could possibly be formed by a deviating 

																																																													
3 This is conceptually analogous to the premise in Salant et al. (1983) that market structures in which some 

cartel (i.e. non-singleton coalition) is unprofitable would never occur in equilibrium with one difference, 

however, in that the status quo in Salant et al. is the Nash equilibrium payoff vector whereas here it is the grand 

coalition with a feasible payoff vector. 
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coalition at least one (singleton or non-singleton) coalition is worse-off. But this so-defined 

core is “too weak” a concept in the sense that it has no bite at least in the common class of 

games in which the grand coalition is the unique efficient coalition structure, i.e. 𝑣(𝑁; 𝑁 ) >

𝑣 𝑆3; 𝑃1
3<0  for every partition 𝑃 = 𝑆0, … , 𝑆1 ≠ 𝑁 . For this familiar class of games 

including the oligopoly games, the so-defined core consists of all payoff vectors 𝑥, 𝑁 .  

     Yet another definition of the core could be as the set of all payoff vectors (𝑥, 𝑁) such that 

in every partition that can possibly be formed by a deviating coalition either the deviating 

coalition or some singleton coalition is worse-off relative to (𝑥, 𝑁). But this definition of the 

core implies that the grand coalition may not be stable even if the so-defined core is 

nonempty. In fact, partitions, other than the grand coalition, such that only some singleton 

coalition is worse-off relative to each so-defined core payoff vector can be stable, because a 

singleton coalition alone cannot change a partition to which it belongs and achieve a higher 

payoff – it needs consent and help of at least one other coalition in the partition to effect any 

change in the partition, but there may be no such coalition in the partition. In contrast, a 

worse-off non-singleton coalition in a partition by itself can change the partition by just 

breaking apart into smaller coalitions. Whereas a singleton coalition cannot.  

     A further interpretation of the strong-core is as the set of all payoff vectors that are 

feasible for the grand coalition and cannot be “blocked” by any coalition by forming a 

partition in which at most singleton coalitions are worse-off. Blocking a feasible payoff 

vector in this set with a partition in which some non-singleton coalition is worse-off is not 

credible, since such a partition, as will be shown in Section 4, is not stable and is farsightedly 

dominated by each payoff vector in the set. This interpretation of the strong-core implicitly 

assumes that the deviating coalitions are not only farsighted but also conservative in the sense 

that a coalition does not deviate if the deviation may result in a “dominance chain” that 

terminates at a feasible payoff vector in which it is not better-off.  

     To further clarify the strong-core concept, consider the three-player game depicted in Fig. 

1 below and in which the players’ payoffs are derived from a symmetric Cournot oligopoly 

when each coalition in each partition distributes its payoff equally among its members. In this 

game, the payoff vector (T
U
, T
U
, T
U
) is feasible for the grand coalition. We claim that this payoff 

vector belongs to the strong-core. This is because if coalition {3} deviates and the resulting 

partition is { 1,2 , 3 }, then the non-singleton coalition {1,2} is worse-off, as W
X
+ W

X
< T

U
+ T

U
, 
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and if the resulting partition is 1 , 2 , 3 , then the deviating coalition {3} itself is worse-

off, as 1 < T
U
. Thus, if {3} deviates, then in all partitions that may possibly form subsequent to 

its deviation and that include the deviating coalition, 3 , either a non-singleton coalition, 

1,2 , is worse-off or the deviating coalition, 3 , itself is worse-off. It is easy to verify 

similarly that this is also the case for deviations by other coalitions.  

 
The grand Coalition {1,2.3} 

(T
U
, T
U
, T
U
) 

 
               {3} deviates, resulting in partition { 1,2 , 3 } 

 All three coalitions willingly merge  
                                                                                                      to form back the grand coalition 

                                                                      (W
X
, W
X
, 00
X
)                            

 
{1,2} breaks apart, inducing the partition {{1},{2},{3}}  

 

(1,1,1) 

 

Figure1 

 

     Now notice that if 3  deviates from the grand coalition with payoff vector (T
U
, T
U
, T
U
), it 

cannot be sure that the resulting partition will indeed be { 1,2 , {3}} and it will get the “free 

rider’s” payoff of 00
X
> T

U
. This is because the partition { 1,2 , {3}} is not stable, since the non-

singleton coalition {1,2} is worse-off compared to its payoff in the grand coalition with 

payoff vector (T
U
, T
U
, T
U
). In fact, the worse-off coalition {1,2} has incentive and can 

successfully deter the deviation by {3} by first breaking apart, leading to payoffs 1,1,1 , and 

then proposing to form back the grand coalition with payoffs T
U
, T
U
, T
U
> 1,1,1 . Notice that 

once coalition {1,2} breaks apart, the deviating coalition {3} will agree to form back the 

grand coalition with payoff vector (T
U
, T
U
, T
U
) > 1,1,1 . Thus, the worse-off non-singleton 

coalition {1,2} has incentive to break apart, as that would lead back to formation of the grand 

coalition and higher payoff for the coalition then if it does not break apart, since (T
U
, T
U
) >
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W
X
. W
X
. The immediate loss in the payoff of coalition {1,2} upon breaking apart is only 

temporary.  

     The above discussion and illustration of the strong-core also highlights that the strong core 

implicitly assumes that the players are farsighted and conservative. This will be made more 

clear and precise in Section 4. 

 

2.2 Some important inclusion relationships 

The 𝛾-core proposed as an improvement over the classical 𝛼- and 𝛽- cores has been applied 

to a wide range of economic models and found useful for analysing situations involving 

externalities such as climate change. See the list of references at the end of the paper. Thus, a 

relevant question regarding the strong-core is whether it is consistent with the 𝛾-core.  

 

Proposition 1 The strong-core of a partition function game (𝑁, 𝑣) is a stronger concept than 

the 𝛾-core in the sense that strong-core ⊂ 𝛾-core in general. But the strong-core is not 

generally equal to the 𝛾-core. 

Proof: Let (𝑥, 𝑁) be a strong-core payoff vector. Since in every partition 𝑆, 𝑁\𝑆 ≠ [𝑁] at 

most coalition 𝑆 is a non-singleton, it follows from definition of the strong-core payoff 

vectors that 𝑥33∈K ≥ 𝑣(𝑆; 𝑆, 𝑁\𝑆  for every non-singleton coalition 𝑆. Furthermore, this 

inequality also holds for every singleton coalition 𝑆, since if the deviating coalition 𝑆 is a 

singleton then the partition {𝑆, 𝑁\𝑆 } contains no singleton coalition and, therefore, the 

deviating coalition 𝑆 itself must be worse-off. Thus, (𝑥, 𝑁) is also a 𝛾-core payoff vector. But 

two are not generally equal, as the following example shows. 

     Let = 1,2, … ,5 , 𝑣 𝑁;𝑁 = 13, 𝑣(𝑆; 𝑆, 𝑁\𝑆 ) = 2.4 𝑆 , 𝑣 𝑆; {𝑆; 𝑁\𝑆} = 2.6 𝑆  for 

𝑆 < 4, 𝑣 𝑆; {𝑆; 𝑁\𝑆} = 2.4 𝑆  for 𝑆 = 4, for each partition 𝑃 = 𝑖𝑗 , 𝑘𝑙 , {𝑚} , 

𝑣 {𝑖𝑗}; 𝑃 = 𝑣 {𝑘𝑙}; 𝑃 = 6 and 𝑣 {𝑚}; 𝑃 = 1, for each partition 𝑃 = 𝑖 , 𝑗 , 𝑘 , {𝑙𝑚} , 

𝑣 {𝑖}; 𝑃 = 1, and for each partition 𝑃 = 𝑖 , 𝑗 , {𝑘𝑙𝑚} , 𝑣 {𝑖}; 𝑃 = 1.  

     In this game, the feasible payoff vector 𝑥0, 𝑥a, … , 𝑥b = (2.6, 2.6, … , 2.6) belongs to the 

𝛾-core and thus the 𝛾-core is nonempty. But the strong-core is empty. This is seen as follows: 

A feasible payoff vector 𝑥0, 𝑥a, … , 𝑥b , by definition, belongs to the strong-core only if 

𝑥33∈H = 13, 𝑥3 ≥ 2.4, 𝑖 = 1,2, … ,5, and at least for the partition 𝑃 = {{12}, {34}, {5}}, 
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either 𝑣 {12}; 𝑃 ≤ 𝑥0 + 𝑥a or 𝑣 {34}; 𝑃 ≤ 𝑥U + 𝑥T.  But there can be no such feasible 

vector, since 𝑥3 ≥ 2.4, 𝑖 = 1,2, … ,5  and, therefore,  𝑥0 + 𝑥a = 13 − 𝑥U − 𝑥T − 𝑥b ≤ 5.8 <

𝑣 {12}; 𝑃  and 𝑥U + 𝑥T = 13 − 𝑥0 − 𝑥a − 𝑥b ≤ 5.8 < 𝑣 {34}; 𝑃 . Hence, the strong-core is 

empty, but the 𝛾-core is not. Thus, the strong-core is strictly smaller than the 𝛾-core. This is 

because the 𝛾-core is determined only by the payoffs 𝑣(𝑆; 𝑆, 𝑁\𝑆 , 𝑆 ⊂ 𝑁, and, unlike the 

strong-core, independent of the payoffs 𝑣 𝑆; 𝑃 , 𝑃 = 𝑖𝑗 , 𝑘𝑙 , {𝑚} , 𝑆 ∈ 𝑃. Thus, 

externalities from coalition formation play a greater role in the determination of the strong-

core.                                                                                                                                            ■ 

 

     Intuitively, the strong-core is smaller than the 𝛾-core because, unlike the 𝛾-core, the 

strong-core, by definition, does not rule out formation of any partition subsequent to a 

deviation. Proposition 1 can be viewed as an extension of a previous consistency property of 

alternative core concepts in that it is known (Chander, 2016: Proposition 1) that in general 

strategic games, 𝛾-core ⊂ 𝛽-core ⊂ 𝛼-core. Proposition 1 implies that for general strategic 

games, strong-core ⊂ 𝛾-core ⊂ 𝛽-core ⊂ 𝛼-core. This is a nice property to have, since it 

means that applications of the strong-core to strategic games that can be converted into 

partition function games, are not inconsistent with applications of 𝛼-, 𝛽-, and 𝛾- cores. As 

will be shown, the strong-core of an oligopoly is strictly smaller than the 𝛾-core and thus is 

also smaller than the 𝛼- and 𝛽- cores.  

     Similarly, on the one hand, the strong-core is a stronger concept than the 𝛿-core, since the 

𝛿-core, by definition, rules out formation of all but binary partitions subsequent to a 

deviation. But, on the other hand, the strong-core is a weaker concept because it, unlike the 

𝛿-core, requires only one, not both (as noted in the paragraph following the definition of the 

𝛿-core) coalitions in every binary partition to be worse-off. For this reason, the strong-core 

and the 𝛿-core are not generally comparable except in some special cases of interest, as 

shown below.  

     Yi (1997) and Maskin (2003) note that in most applications the partition function games 

can be classified into two classes, namely, as games with “positive” or “negative” 

externalities. 

     A partition function game (𝑁, 𝑣) has positive (negative) externalities if for every partition 

𝑃 = 𝑆0, … , 𝑆1  and 𝑆3, 𝑆5 ∈ 𝑃, we have 𝑣(𝑆J; 𝑃\{𝑆3, 𝑆5} ∪ {𝑆3 ∪ 𝑆5}) ≥ (≤)𝑣(𝑆J; 𝑃) for each 

𝑆J ∈ 𝑃, 𝑘 ≠ 𝑖, 𝑗.  
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     In words, a partition function game has positive (negative) externalities if a merger 

between any two coalitions in a partition increases (decreases) the worth of every other 

coalition in the partition.4 It is known that for games with positive externalities, 𝛿-core ⊂ 𝛾-

core. I now establish an additional inclusion relationship. 

 

Proposition 2 (a) For partition function games with positive externalities, 𝛿-core ⊂ strong-

core ⊂ 𝛾-core, and (b) for games with negative externalities, strong-core = 𝛾-core ⊂ 𝛿-core. 

Proof: (a) First, suppose contrary to the assertion that in a game with positive externalities a 

𝛿-core payoff vector (𝑥0, … , 𝑥F) does not belong to the strong-core. Since (𝑥0, … , 𝑥F) 

belongs to the 𝛿-core, for every coalition 𝑆 ⊂ 𝑁 and partition  𝑆, 𝑁\𝑆 , 𝑥33∈K ≥

𝑣 𝑆; 𝑆, 𝑁\𝑆 ≥ 𝑣(𝑆; 𝑆, 𝑁\𝑆 , since externalities are positive. In particular, for 𝑆 = 𝑖 , 

𝑥3 ≥ 𝑣 𝑖; 𝑁 , 𝑖 = 1,… , 𝑛. Furthermore, since (𝑥0, … , 𝑥F), by supposition, does not belong to 

the strong-core, there must exist a partition 𝑃 = {𝑆0, … , 𝑆1} ≠ [𝑁] such that 𝑣(𝑆3; 𝑃) >

𝑥55∈KL  for all 𝑆3 ∈ 𝑃 with 𝑆3 > 1. Then, since externalities are positive, 𝑣 𝑆3; 𝑃e >

	 𝑥55∈KL , where 𝑃e = {𝑆3, 𝑁\𝑆3}. But this contradicts that (𝑥0, … , 𝑥F) belongs to the 𝛿-core. 

Hence our supposition is wrong and, therefore, every 𝛿-core payoff vector (𝑥0, … , 𝑥F) 

belongs to the strong-core. This proves that 𝛿-core ⊂ strong-core. 

     Second, if (𝑥0, … , 𝑥F) belongs to the strong-core, then, by definition, 𝑥33∈K ≥

𝑣(𝑆; 𝑁\𝑆 ) for all non-singleton coalitions 𝑆 and for the partition 𝑃 = [𝑁], 𝑥3 ≥

𝑣 𝑖; 𝑁 , 𝑖 = 1,… , 𝑛. Thus, every strong-core payoff vector (𝑥0, … , 𝑥F) belongs to the 𝛾-

core. This proves strong-core ⊂ 𝛾-core.   

     (b) First, let (𝑥0, … , 𝑥F) be a 𝛾-core payoff vector of a partition function game 𝑁, 𝑣  with 

negative externalities. We claim that (𝑥0, … , 𝑥F) also belongs to the strong-core. Suppose not. 

Since (𝑥0, … , 𝑥F) belongs to the 𝛾-core, for every partition  𝑆, 𝑁\𝑆 , 𝑆 ⊂ 𝑁, 𝑥33∈K ≥

𝑣 𝑆; 𝑆, 𝑁\𝑆  and 𝑥3 ≥ 𝑣 𝑖; 𝑁 , 𝑖 = 1,… , 𝑛. Then, since (𝑥0, … , 𝑥F), by supposition, 

does not belong to the strong-core, there must be a partition 𝑃 = {𝑆0, … , 𝑆1} ≠ [𝑁] such that 

𝑣(𝑆3; 𝑃) > 𝑥55∈KL  for all 𝑆3 ∈ 𝑃 with 𝑆3 > 1. Let 𝑃e = {𝑆3, 𝑁\𝑆3 } denote the partition in 

which all but coalition 𝑆3 is a singleton. Then, since the game (𝑁, 𝑣) has negative 

externalities, 𝑣(𝑆3; {𝑆3, 𝑁\𝑆3 ) ≥ 𝑣(𝑆3; 𝑃) > 𝑥55∈KL . But this contradicts that (𝑥0, … , 𝑥F) is 

a 𝛾-core payoff vector. Hence, our supposition is wrong and each 𝛾-core payoff vector 
																																																													
4 See Yi (1997), Maskin (2003), and Hafalir (2007) among others for the definition.  
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(𝑥0, … , 𝑥F) also belongs to the strong-core. This proves that 𝛾-core ⊂ strong-core. Since, as 

Proposition 1 shows, strong-core ⊂ 𝛾-core in general. Therefore, for games with negative 

externalities, strong-core = 𝛾-core. 

     Second, suppose contrary to the assertion that for a game with negative externalities a 

strong payoff vector (𝑥0, … , 𝑥F) does not belong to the 𝛿-core. Then, we must have 𝑥33∈K <

𝑣(𝑆; 𝑆, 𝑁\𝑆 ) for some 𝑆 ⊂ 𝑁. Since externalities are negative, this implies 𝑥33∈K <

𝑣(𝑆; {𝑆, 𝑁\𝑆 }) for some 𝑆 ⊂ 𝑁. But this contradicts that (𝑥0, … , 𝑥F) belongs to the strong-

core. Thus our supposition is wrong and every strong-core payoff vector (𝑥0, … , 𝑥F) also 

belongs to the 𝛿-core. This proves strong-core ⊂ 𝛿-core.                                                         ■ 

 

     Examples can be constructed to show that both inclusions in part (a) of Proposition 2 are 

strict in the same game, i.e., there are games with positive externalities in which the strong-

core is not equal to either the 𝛾-core or the 𝛿-core, but “sits” nicely between them.  

	

2.3 An additional property of the strong-core  

I now establish an additional property of the strong-core by restricting to another special class 

of partition function games. 

 

Definition 4 A partition function game 𝑁, 𝑣  is partially superadditive if for each partition 

𝑃 = {𝑆0, … , 𝑆1} with 𝑆3 ≥ 2, 𝑖 = 1,… , 𝑘, and 𝑆5 = 1, 𝑗 = 𝑘 + 1,… ,𝑚, 𝑘 ≤ 𝑚, 

𝑣 𝑆3; 𝑃 ≤J
3<0 𝑣 𝑆; 𝑃e  where  𝑃e = 𝑃\ 𝑆0, … , 𝑆J ∪ {∪3<0J 𝑆3}. 

     Partial superadditivity, as the term suggests, is weaker than the familiar notion of 

superadditivity, which requires that combining any number of arbitrary coalitions increases 

their worth.5 In contrast, partial superadditivity requires that combining only all non-

singleton coalitions increases their worth. Thus, partial superadditivity is weaker than  

superaddivity. 

   

Proposition 3 Let (𝑁, 𝑣) be a partially superadditive partition function game. Then the 

strong-core is equal to the 𝛾-core. 

																																																													
5 See Hafalir (2007) for a formal definition. However, Hafalir uses the term “fully cohesive” in place of 

“superadditive”. 
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Proof: The strong-core, by definition, is a subset of the 𝛾-core. Formally, if (𝑥0, … , 𝑥F) 

belongs to the strong-core, then, by definition, 𝑥33∈K ≥ 𝑣(𝑆; 𝑁\𝑆 ) for all non-singleton 

coalitions 𝑆 and 𝑥3 ≥ 𝑣 𝑖; 𝑁 , 𝑖 = 1,2, … , 𝑛. Therefore, (𝑥0, … , 𝑥F) also belongs to the 𝛾-

core. Thus, we only need to prove that each 𝛾-core payoff vector also belongs to the strong-

core. 

     Let (𝑥0, … , 𝑥F) be a 𝛾-core payoff vector and let  𝑃 = 𝑆0, … , 𝑆1  be a partition of 𝑁. If 

𝑃 = 𝑆0, … , 𝑆1 ≠ 𝑁 , then let 𝑆3 > 1, for 𝑖 = 1,… , 𝑘 and 𝑆5 = 1 for 𝑗 = 𝑘 +

1,… ,𝑚, 𝑘 ≤ 𝑚, and 𝑆 =∪3<0J 𝑆3. Since 𝑣 is partially superadditive, 𝑣 𝑆3; 𝑃 ≤J
3<0 𝑣 𝑆; 𝑃e  

where 𝑃e = 𝑃\ 𝑆0, … , 𝑆J ∪ {𝑆}. Clearly, 𝑃e = 𝑆, [𝑁\𝑆] . Since (𝑥0, … , 𝑥F) is a 𝛾-core 

payoff vector, 𝑥33∈K ≥ 𝑣 𝑆; 𝑆, [𝑁\𝑆] = 𝑣(𝑆; 𝑃e) ≥ 𝑣 𝑆3; 𝑃 .J
3<0  This inequality can be 

rewritten as 𝑥55∈KL
J
3<0 ≥ 𝑣 𝑆3; 𝑃J

3<0  and, therefore, 𝑥55∈KL ≥ 𝑣(𝑆3; 𝑃) for at least one 

𝑆3 ∈ 𝑆0, … , 𝑆J 	⊂ 𝑃 with 𝑠3 > 1. If 𝑃 = [𝑁], then since (𝑥0, … , 𝑥F) is a 𝛾-core payoff 

vector, 𝑥3 ≥ 𝑣 𝑖; 𝑖, 𝑁\𝑖 = 𝑣 𝑖; 𝑁 . This proves that (𝑥0, … , 𝑥F) belongs to the strong-

core.                                                                                                                                            ■ 

  

     Partial superadditivity is trivially satisfied in all three-player partition function games. It is 

also satisfied by those four-player partition function games, including the oligopoly games, in 

which the grand coalition is efficient. I apply Proposition 3 below to an oligopoly game in 

which firms have capacity constraints to show that the game is partially superadditive and, 

therefore, the strong-core is equal to the 𝛾-core which is known to be nonempty (Lardon, 

2012).6 

 

2.4 A class of games with nonempty strong-cores 

A number of studies on coalition formation have focused on symmetric partition function 

games in which larger coalitions in each partition have lower per-member payoffs (see e.g. 

Ray and Vohra, 1997, Funaki and Yamato, 1999, and Chander, 2007). It is known (Chander, 

2016) that these games admit nonempty 𝛾-cores. But the 𝛾-cores of these games are not equal 

to the strong-cores as these games are not partially superadditive and strong-cores, as shown, 

																																																													
6 Another application of Proposition 3 is that the games in Chander and Tulkens (1997) and Helm (2001) admit 

nonempty strong-cores if the ‘damage functions’ are linear, since then these games are partially superadditive 

and the 𝛾-cores of these games are known to be nonempty.  
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are generally smaller. I now prove a stronger result in that I show that these games actually 

admit nonempty strong-cores.  

 

Proposition 4 Let 𝑁, 𝑣  be a symmetric partition function game such that for every partition 

𝑃 = 𝑆0, … , 𝑆1 , 𝑣(𝑆3; 𝑃)/ 𝑆3 < (=)𝑣(𝑆5; 𝑃)/ 𝑆5  if 𝑆3 > (=) 𝑆5 , 𝑖, 𝑗 ∈ 1, … ,𝑚  and 

𝑣(𝑁;𝑁) > 𝑣(𝑆3; 𝑃)KL∈h . Then, 𝑁, 𝑣  admits a nonempty strong-core. 

Proof: Let (𝑥0, … , 𝑥F) be the feasible payoff vector with equal shares, i.e., 𝑥33∈H = 𝑣(𝑁;𝑁) 

and  𝑥3 = 𝑥5, 𝑖, 𝑗 ∈ 𝑁. We claim that (𝑥0, … , 𝑥F) is a strong-core payoff vector. 

Let  𝑃 = 𝑆0, … , 𝑆1 ≠ 𝑁 be some partition of 𝑁. If 𝑃 = 𝑁 , then 𝑥3 ≥ 𝑣(𝑖; [𝑁]) for all 

𝑖 ∈ [𝑁], since 𝑣(𝑁;𝑁) > 𝑣(𝑖; 𝑁 )3∈H , 𝑥33∈H = 𝑣 𝑁;𝑁 , 𝑣 𝑖; 𝑁 = 𝑣 𝑗; 𝑁 , and 

𝑥3 = 𝑥5 for all 𝑖, 𝑗 ∈ 𝑁. If 𝑃 ≠ 𝑁 , then the number of coalitions in the partition is 𝑚 ≥

2,𝑚 < 𝑛. Without loss of generality assume that 𝑆0 ≥ 𝑆a ≥ ⋯ ≥ 𝑆1 . Thus, 𝑛 > 𝑚 ≥ 2 

and 𝑣(𝑆3; 𝑃)1
3<0 < 𝑣 𝑁;𝑁 = 𝑥33∈H , as hypothesized. This inequality implies 𝑣 𝑆0; 𝑃 <

𝑥33∈Kj , since 𝑣(𝑆0; 𝑃)/ 𝑆0 ≤ 𝑣(𝑆5; 𝑃)/ 𝑆5   for all 𝑆5 ∈ 𝑃 and 𝑥3 = 𝑥5, 𝑖, 𝑗 ∈ 𝑁.  Since 𝑛 ≥

3 and 𝑃 ≠ 𝑁 ,𝑁, we must have 𝑆0 ≥ 2. This proves that each partition 𝑃 ≠ 𝑁 , includes 

at least one non-singleton coalition which is worse-off relative to the feasible payoff vector 

with equal shares (𝑥0, … , 𝑥F) and 𝑥3 ≥ 𝑣 𝑖; 𝑁 , 𝑖 = 1,… , 𝑛. By Definition 3, 𝑥0, … , 𝑥F  

belongs to the strong-core.                                                                                      ■  

 

3. The strong-core of an oligopoly   

In this section, I first define an oligopoly as a strategic game. Then, as in the approach 

pioneered by Ichiishi (1981) and Zhao (1996), I convert the strategic oligopoly game into a 

partition function game by proving existence of a unique Nash equilibrium for each induced 

strategic game in which each coalition in each partition acts as one single player and the 

payoff to each coalition in a partition is the sum of profits that accrue to each of its members.  

As will be seen below, this conversion is based on outputs, prices and thus profits that are 

endogenously determined in exactly the same way as in Salant et al. (1983). 

     The set of oligopolistic firms is 𝑁 = 1,… , 𝑛 .	 Let 𝑝(𝑞) denote the inverse demand 

function faced by these firms, where 𝑞 is the total demand. I assume that the inverse demand 

function is differentiable and strictly decreasing and concave, i.e., 𝑝e 𝑞 < 0 and 𝑝ee(𝑞) ≤
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0.7 These assumptions imply that the revenue function 𝑝 𝑞 𝑞3 of each firm 𝑖 is concave in 

𝑞0, … , 𝑞F, i.e. the marginal revenue 𝑝 𝑞 + 𝑝e(𝑞)𝑞3 of each firm 𝑖 is non-increasing in the 

output of other firms, since  𝑝e 𝑞 + 𝑝ee 𝑞 𝑞3 ≤ 0 for each fixed 𝑞3 ≥ 0, as well as in its own 

output, given the output of other firms, since 2𝑝e 𝑞 + 𝑝ee 𝑞 𝑞3 ≤ 0 for all fixed 𝑞5 ≥ 0, 𝑗 ≠

𝑖.  

The cost function of firm 𝑖 is 𝑐3(𝑞3) with 𝑐3 0 = 0. I assume that the cost function of 

each firm is differentiable, strictly increasing and strictly convex, i.e., 𝑐3e 0 = 0, 𝑐3e 𝑞3 >

0, 𝑞3 > 0, and 𝑐3ee 𝑞3 > 0, 𝑞3 ≥ 0. Assuming a strictly convex cost function implies that a 

coalition of two or more firms can produce the same output at a lower cost than a single, 

standalone firm. Thus, there is an additional incentive for the firms to cooperate. For the time 

being I do not impose any capacity constraints on the outputs of the firms and assume that the 

firms can expand their production capacity as and when necessary. This leads to a long-run 

equilibrium analysis of an oligopoly.  

The profit function of each firm 𝑖 is 𝜋3 𝑞0, … , 𝑞F = 𝑝 𝑞 𝑞3 − 𝑐3 𝑞3 , where 𝑞 = 𝑞55∈H .	 

In order to avoid corner solutions, I assume that there exists an upper bound 𝑞p such that 

𝑝 𝑞p + 𝑝	e 𝑞p 𝑞p − 𝑐3e 𝑞p < 0 for each firm 𝑖. Since both 𝑝(𝑞) and 𝑝e(𝑞) are non-

increasing functions of 𝑞, this assumption implies that a standalone profit maximizing firm or 

a firm as a member of a profit maximizing coalition will never produce an output larger than 

𝑞p even if it has the capacity to do so. We assume further that 𝑝 (𝑛 − 1)𝑞p > 0. Since 

𝑐3e 0 = 0, this assumption implies that a standalone profit maximizing firm or a firm as a 

member of a profit maximizing coalition will always produce a positive amount irrespective 

of the output of other profit maximizing firms or coalitions. 

  

3.1 The oligopoly game 

Let 𝐴3 = 0, 𝑞p , 𝐴 = 𝐴0×⋯×𝐴F, and 𝜋 = 𝜋0,… , 𝜋F . I shall refer to the strategic game 

(𝑁, 𝐴, 𝜋) as the oligopoly game. Clearly, each strategy set 𝐴3 is compact and convex and each 

𝜋3 is concave and continuous in 𝑞0, … , 𝑞F.  

 

Lemma 5 The oligopoly game 𝑁, 𝐴, 𝜋  admits a unique Nash equilibrium	(𝑞0, … , 𝑞F) . 

																																																													
7 It is worth noting that a linear demand function 𝑝 𝑞 = 𝑎 − 𝑏𝑞 satisfies these assumptions.  



17	
	

Proof: See the appendix to the paper.                                                                                        ∎ 

 

Let 𝑁h, 𝐴h, 𝜋h  denote the induced game when the firms form a partition 𝑃 =

{𝑆0, … , 𝑆1} and each coalition 𝑆3, 𝑖 = 1,… ,𝑚, in the partition acts as a single player. Since 

each  𝜋3 𝑞0, … , 𝑞F  is concave and continuous in 𝑞0, … , 𝑞F, the payoff function 

	𝜋KL
h 𝑞0, … , 𝑞F  ≡ 𝜋5(𝑞0, … , 𝑞F))5∈KL  of coalition 𝑆3 is also concave and continuous in 

𝑞0, … , 𝑞F. Moreover, the strategy set ×5∈KL𝐴5 of coalition 𝑆3 is compact and convex. 

Therefore, as in Lemma 5, the induced game  𝑁h, 𝐴h, 𝜋h  also admits a unique Nash 

equilibrium 𝑞0h, … , 𝑞Fh .  Let 𝑣(𝑆3; 𝑃) be equal to the Nash equilibrium payoff of coalition 𝑆3 

in the induced game, i.e. 𝑣 𝑆3; 𝑃 = 𝜋55∈KL (𝑞0h, … , 𝑞Fh). Then,  (𝑁, 𝑣) is the partition 

function game form of the oligopoly game (𝑁, 𝐴, 𝜋). Clearly, the grand coalition in this 

partition function game is efficient, since the grand coalition can choose at least the same 

strategies as the coalitions in any partition.  

Since all firms face the same demand function, the firms are identical if their cost 

functions are equal, i.e. 𝑐3(. ) = 𝑐5(. ), 𝑖, 𝑗 ∈ 𝑁.     

 

Proposition 6 If all firms are identical, then the partition function game form 𝑁, 𝑣  of the 

oligopoly game (𝑁, 𝐴, 𝜋) is symmetric and admits a nonempty strong-core. 

Proof: For each partition 𝑃 = {𝑆0, … , 𝑆1}, let (𝑞0h, … , 𝑞Fh) denote the unique Nash equilibrium 

of the induced game 𝑁h, 𝐴h, 𝜋h . Then, by the first order conditions, 𝑐3e 𝑞3h =

𝑝 𝑞3h3∈H + ( 𝑞5h5∈Kw ) 𝑝e( 𝑞3h3∈H ), 𝑖 ∈ 𝑆J. Since the firms are identical 𝑞3h = 𝑞5h, 𝑖, 𝑗 ∈ 𝑆J. 

Since each 𝑐3 is strictly convex, these equalities imply that 𝑞5h > (=)𝑞3h if 𝑗 ∈ 𝑆J ∈ 𝑃, 𝑖 ∈

𝑆x ∈ 𝑃 and 𝑆J < (=) 𝑆x . That is if the firms are identical and form cartels, the output of 

each firm in a larger cartel is lower. Thus, since all firms are identical and face the same 

prices,	𝑣(𝑆J; 𝑃)/ 𝑆J > (=)𝑣(𝑆x; 𝑃)/ 𝑆x  if 𝑆J < = 𝑆x , 𝑘, 𝑟 ∈ 1,… ,𝑚 . The proof now 

follows from Proposition 3.                                                                                                       ∎ 

 

     Proposition 6 is more general than previous similar results in at least three respects. First, 

it holds for an oligopoly with any finite number of firms, second it holds for more general 

demand and cost functions,8 and third, it proves the existence of a nonempty strong-core, 

																																																													
8 Most studies assume specific demand and cost functions. 
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which is generally a subset of the 𝛾-core.9 The following example which belongs to the class 

of oligopoly games in Proposition 6 confirms that in many cases it is actually a strict subset. 

     Proposition 6 means that in a symmetric oligopoly at least one cartel (i.e. a non-singleton 

coalition) in any market structure is worse-off then under monopoly with equal sharing of its 

profits among its members. Thus, any break up of monopoly would be opposed by at least 

one group of firms.   

 

Example 1 Let 𝑁 = 1,2,3,4,5 , 𝑝 𝑞 = 1 − 𝑞 and 𝑐3 𝑞3 = 0
a
𝑞3a, 𝑖 ∈ 𝑁.  

     We first show that the example does not satisfy the sufficient condition for equality of the 

strong core and the 𝛾-core, i.e., partition function game representation (𝑁, 𝑣) of this 

oligopoly is not partially superadditive. Let 𝑃 = {{1}, 2,3 , 4,5 } and 𝐻 = 1 , 2,3,4,5 .  

We claim that 𝑣 2,3,4,5 ; 𝐻 < 𝑣 2,3 ; 𝑃 + 𝑣 4,5 ; 𝑃 . It is easily seen that 𝑞0h =
U
0{
, 𝑞ah = 𝑞Uh = 𝑞Th = 𝑞bh =

a
0{

 and, thus, 𝑣 2,3 ; 𝑃 = 𝑣 4,5 ; 𝑃 = 5 ( a
0{
)a. Similarly, 𝑞0| =

b
aU
, 𝑞a| = 𝑞U| = 𝑞T| = 𝑞b| =

a
aU

 and 𝑣 2,3,4,5 ; 𝐻 = 18( a
aU
)a < 𝑣 2,3 ; 𝑃 + 𝑣 3,4 ; 𝑃 =

5 ( a
0{
)a + 5 ( a

0{
)a. 

     It is noteworthy that 𝑞0| =
b
aU
> 𝑞0h =

U
0{

, but 𝑞a| = 𝑞U| = 𝑞T| = 𝑞b| =
a
aU
< 𝑞0h =

U
0{
, 𝑞ah =

𝑞Uh = 𝑞Th = 𝑞bh =
a
0{
, that is if the two cartels {2,3} and {4,5} merge then each firm in these 

cartels produces a smaller output, but the outside firm {1} produces a larger output. This is 

because every firm in the merged cartels must take into account the effect of its production 

not only on its own profit, but also on the profits of all other firms in the merged cartels. But 

a decrease in the outputs of the firms in the merged cartels makes it profitable for the 

oligopolistic firm outside the cartels to raise its output. 

     Since partial superadditivity is a sufficient, not a necessary, condition for equality of the 

strong-core and the 𝛾-core, it remains to be verified that the strong-core of this oligopoly is 

indeed smaller. To that end, we note that 𝑣 𝑁; 𝑁 = b
aa
.  Let 𝑥0 = 𝑣 𝑁; 𝑁 −

																																																													
9Rajan (1989) proves existence of a nonempty 𝛾-core for a symmetric oligopoly with only three firms. Lardon 

(2012) proves existence of a nonempty 𝛾-core for an oligopoly with exogenously fixed production capacities. 

Radner (2001) and Zhao (1999) prove non-emptiness of the traditional 𝛼- and 𝛽- cores, which are generally 

larger than even the 𝛾-core and, therefore, the strong core.    
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𝑣 2,3,4,5 ; 𝐻 = b
aa
− 18( a

aU
)a and 𝑥a = 𝑥U = 𝑥T = 𝑥b =

0
T
𝑣 2,3,4,5 ; 𝐻 = 0X

T
( a
aU
)a. Then 

the feasible payoff vector (𝑥0, … , 𝑥b) belongs to the 𝛾-core, since the game is symmetric and 
0
T
𝑣 2,3,4,5 ; 𝐻 > 0

U
𝑣( 3,4,5 ; 1 , 2 , 3,4,5 ) > 0

a
𝑣( 4,5 ; 1 , 2 , 3 , 4,5 >

𝑣( 𝑖 ; 𝑁 ) and 𝑥0 > 	
0
T
𝑣 2,3,4,5 ; 𝐻 . But the feasible payoff vector (𝑥0, … , 𝑥b) does not 

belong to the strong-core, since 𝑥a + 𝑥U = 𝑥T + 𝑥b =
0X
a
( a
aU
)a < 	𝑣 2,3 ; 𝑃 =

𝑣 4,5 ; 𝑃 = 5 ( a
0{
)a. 

     The example may look unnecessarily complicated, but this is because in games in which 

the grand coalition is efficient there have to be at least five players for the strong-core to be 

strictly smaller than the 𝛾-core. It is known that oligopoly games exhibit positive externalities 

and therefore the 𝛿-core is smaller than the 𝛾-core. As shown in Proposition 2, it is in fact 

smaller than even the strong-core. Indeed, Rajan (1989: Theorem 1) shows that the 𝛿-core of 

a symmetric oligopoly with just three firms is empty but the 𝛾-core is not (Rajan, 1989: 

Theorem 2) and, therefore, the strong core is also not empty (by Proposition 3), as there are 

only three firms and thus the game is partially superadditive and the strong-core is equal to 

the 𝛾-core. 

  

3.2 An oligopoly with capacity constraints  

A number of studies (e.g. Radner, 2001,Yong, 2004, Lardon, 2012) focus on oligopolies with 

firms with arbitrary capacity constraints. In the same vein, I now prove existence of a 

nonempty strong-core for a specific set of capacity constraints. In particular, I assume that 

each firm 𝑖 in an oligopoly faces a capacity constraint 𝑘3 = 𝑞3, 𝑖 = 1,… , 𝑛, where 𝑞3 is its 

Nash equilibrium output in the oligopoly game 𝑁, 𝐴, 𝜋 . Such capacity constraints seem 

natural, since if an antitrust policy is in place, the firms would produce according to their 

Nash equilibrium strategies and build production capacities accordingly. The question is 

whether with these capacity constraints also oligopolistic firms will merge to a monopoly if 

the antitrust policy is abolished. 

Let 𝐴3 = 0, 𝑞3 , 𝑖 ∈ 𝑁, and 𝐴 = 𝐴0×…×𝐴F.10 I shall refer to the strategic game (𝑁, 𝐴, 𝜋	) 

as the constrained oligopoly game. Let 𝑁h, 𝐴h, 𝜋h  denote the induced game when the 
																																																													
10 This means implicitly that the production capacities of the firms cannot be transferred or pooled and cartel 

formation does not confer any advantage in terms of size on the firms in the cartel. The same is also true in 
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capacity constrained firms form a partition 𝑃 = {𝑆0, … , 𝑆1} and each coalition 𝑆3, 𝑖 =

1,… ,𝑚, in the partition acts as a single firm. Clearly, the strategy set ×5∈KL𝐴5 of coalition 𝑆3  

is compact and convex and, by the same arguments as in Lemma 5, each induced game  

𝑁h, 𝐴h, 𝜋h   admits a unique Nash equilibrium (𝑞0h, … , 𝑞Fh). In particular, the Nash 

equilibrium (𝑞0, … , 𝑞F) of the original oligopoly game (𝑁, 𝐴, 𝜋) is also the unique Nash 

equilibrium of the constrained oligopoly game (𝑁, 𝐴, 𝜋).  

 

Proposition 7 For each partition 𝑃 = 𝑆, 𝑁\𝑆 , 𝑆 ⊂ 𝑁, let (𝑞0h, … , 𝑞Fh) denote the unique 

Nash equilibrium of the induced constrained game 𝑁h, 𝐴h, 𝜋h . Then, (i) 𝑞5h = 𝑞5 for each  

𝑗 ∈ 𝑁\𝑆 and (ii) 𝑞h ≡ 𝑞3h3∈H < 𝑞33∈H ≡ 𝑞  That is if a cartel forms then the output of 

each independent firm is equal to its full capacity output, but the total industry output is lower 

compared to the Nash equilibrium output.   

Proof:  (i) By definition of the induced constrained game, 𝑞3h ≤ 𝑞3, 𝑖 ∈ 𝑁, and, thus, 𝑞h ≤ 𝑞. 

Suppose contrary to the assertion that 𝑞5h < 𝑞5 for some 𝑗 ∈ 𝑁\𝑆. Then, by the first order 

conditions for a Nash equilibrium, 𝑐5e 𝑞5 = 𝑝 𝑞 + 𝑞5𝑝e 𝑞 < 𝑝 𝑞 + 𝑞5h𝑝e 𝑞 ≤ 𝑝 𝑞h +

𝑞5h𝑝e 𝑞h = 𝑐5e 𝑞5h ⟹ 𝑞5 < 𝑞5h, since 𝑐5 is strictly convex. But this contradicts our 

supposition that 𝑞5h < 𝑞5. Therefore, 𝑞5h = 𝑞5 for all 𝑗 ∈ 𝑁\𝑆. 

(ii) Suppose contrary to the assertion that 𝑞h = 𝑞. Then, 𝑞5h = 𝑞5 for all 𝑗 ∈ 𝑁	and for each 

𝑖 ∈ 𝑆, 𝑐3e 𝑞3h = ( 𝑞5h5∈K ) 𝑝e 𝑞h + 𝑝 𝑞h = ( 𝑞33∈K )𝑝e 𝑞 + 𝑝 𝑞 < 𝑞3𝑝e 𝑞 + 𝑝 𝑞  = 

𝑐3e 𝑞3 ⟹ 𝑞3 > 𝑞3h, since 𝑐3 is strictly convex. But this contradicts our supposition that 𝑞h =

𝑞 and 𝑞5h = 𝑞5, 𝑗 ∈ 𝑁. Therefore, 𝑞h < 𝑞.                                                                      ∎ 

 

     Proposition 7 implies that if a cartel forms, then in the resulting equilibrium the total 

output is lower compared to the Nash equilibrium output and thus the prices are higher and 

the firms outside the cartel are better-off even though they cannot increase their outputs 

because of the capacity constraints; the firms in the cartel are not necessarily better-off 

because, on the one hand, they could be better-off because the prices are higher but, on the 

other hand, they could be worse-off because of their total output is lower. Thus, despite 
																																																																																																																																																																																													
models which allow pooling of production capacities, but assume firms with identical technologies and constant 

returns to scale. 
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capacity constraints, Proposition7 is consistent with the analysis in Salant et al. (1983) as well 

as with Segal (1999) who shows that cartel formation may confer positive externality on 

outside firms.11   

     The partition function game form of an oligopoly, as Example 1 shows, is typically not 

partially superadditive. But it is, if the firms face capacity constraints equal to their Nash 

equilibrium outputs, as the next proposition shows. 

 

Proposition 8 The partition function game representation of the constrained oligopoly game 

(𝑁, 𝐴, 𝜋) is partially superadditive.  

Proof:  As in Lemma 5, for each partition 𝑃 = {𝑆0, … , 𝑆1}, the induced game 𝑁h, 𝐴h, 𝜋h  

admits a unique Nash equilibrium. Let (𝑞0h, … , 𝑞Fh) denote the unique Nash equilibrium. Then, 

by definition of the constrained oligopoly game, 𝑞h ≡ 𝑞3h3∈H ≤ 𝑞 = 𝑞33∈H = 𝑘33∈H .  

We claim that, as in Proposition 7,  𝑞5h = 𝑞5 = 𝑘3 for each singleton coalition {𝑗} in partition 

𝑃. Suppose contrary to the claim that 𝑞5h < 𝑞5 for some singleton coalition 𝑗 ∈ 𝑃. Then, 

𝑐5e 𝑞5h = 𝑝 𝑞h + 𝑞5h𝑝e 𝑞h ≥ 𝑝 𝑞 + 𝑞5h𝑝e 𝑞 > 𝑝 𝑞 + 𝑞5𝑝e 𝑞 = 𝑐5e 𝑞5 ⟹ 𝑞5 < 𝑞5h, 

since 𝑐5 is strictly convex. But this is a contradiction. Thus, 𝑞5h = 𝑞5 = 𝑘5 for each singleton 

firm 𝑗 in 𝑃.  

     Let 𝑣 𝑆3, 𝑃 = 𝜋55∈KL 𝑞0h, … , 𝑞Fh . Without loss of generality assume that in partition 

𝑃 = {𝑆0, … , 𝑆1}, 𝑆3 > 1, 𝑖 = 1,… , 𝑟, and 𝑆5 = 1, 𝑗 = 𝑟 + 1,… ,𝑚. Let 𝑆 =∪3<0x 𝑆3,   𝐻 =

𝑃\ 𝑆0, … , 𝑆x ∪ 𝑆 = 𝑆, 𝑁\𝑆 	and let (𝑞0|, … , 𝑞F|) be the unique Nash equilibrium of the 

induced constrained game  𝑁|, 𝐴|, 𝜋|   and 𝑣 𝑆;𝐻 = 	 𝜋33∈K (𝑞0|, … , 𝑞F|). We claim that 

𝑣 𝑆3; 𝑃 ≤x
3<0 𝑣 𝑆;𝐻 , that is, 𝑣 is partially superadditive. We first prove that 𝑞| ≡

𝑞3|3∈H ≤ 𝑞3h3∈H = 𝑞h. Suppose contrary to the assertion that 𝑞| > 𝑞h. Then, since 𝑞5| ≤

𝑞5h = 𝑘3 for each 𝑗 ∈ 𝑁\𝑆, 𝑞3|3∈K > 𝑞3h3∈K  and, therefore, 𝑞5|5∈KL > 𝑞5h5∈KL  for at least 

one non-singleton coalition 𝑆3 and  for each 𝑗 ∈ 𝑆3, 𝑐5e 𝑞5h = ( 𝑞Jh)J∈KL 𝑝e 𝑞h + 𝑝(𝑞h) >

𝑞J|J∈KL 𝑝e 𝑞h + 𝑝 𝑞h ≥ ( 𝑞J|J∈KL )𝑝e 𝑞| + 𝑝 𝑞| = 𝑐5e 𝑞5| . Thus, 𝑞5h > 𝑞5|, since 𝑐3 

is strictly convex. But this contradicts that 𝑞5|5∈KL > 𝑞5h5∈KL . Hence,	 𝑞3|3∈K ≤ 𝑞3h3∈K  

and 𝑞| ≤ 𝑞h.  This also implies that 𝑞5| = 𝑞5 = 𝑘5 for all 𝑗 ∈ 𝑁\𝑆. To see this, suppose on 

the contrary that 𝑞5| < 𝑞5 for some 𝑗 ∈ 𝑁\𝑆. Then, since 𝑞| ≤ 𝑞h ≤ 𝑞 (as shown), 𝑐5e 𝑞5| =
																																																													
11 This too is analogous to a result in a climate change model (Chander and Tulkens, 1997: Proposition 4). 



22	
	

𝑝 𝑞| + 𝑞5|𝑝e 𝑞| ≥ 𝑝 𝑞 + 𝑞5|𝑝e 𝑞 > 𝑝 𝑞 + 𝑞5𝑝e 𝑞 = 𝑐5e 𝑞5 ⟹ 𝑞5 < 𝑞5|, which 

contradicts our supposition that 𝑞5| < 𝑞5. Therefore, 𝑞5| = 𝑞5 = 𝑘3 for all 𝑗 ∈ 𝑁\𝑆. Since 

coalition 𝑆 could have chosen for each 𝑖 ∈ 𝑆 an output level 𝑞3h but chose instead 𝑞3| and 

𝑞5| = 𝑞5h = 𝑞5 = 𝑘5 for each 𝑗 ∈ 𝑁\𝑆, it follows that 𝑣 𝑆;𝐻 = 	 𝜋33∈K (𝑞0|, … , 𝑞F|) ≥ 

𝜋55∈KL 𝑞0h, … , 𝑞Fhx
3<0  = 𝑣 𝑆3, 𝑃x

3<0 , i.e. the partition function game (𝑁, 𝑣) is partially 

superadditive.                                                                                                                            ∎                                    

 

     Proposition 8 provides useful insights into the industry structure that is likely to emerge in 

the absence of an antitrust policy when the firms face capacity constraints equal to their Nash 

equilibrium outputs, as it implies that all existing cartels (i.e. non-singleton coalitions) in the 

industry will have incentives to merge and form a single cartel followed by a competitive 

fringe. As seen from the proof of Proposition 8, the total output will fall after the merger but 

the total profit/payoff of the firms in the merger of all cartels will be higher and so will be the 

profits of the outside firms. Comparing propositions 7 and 8, it follows that while merger of 

all existing cartels in an industry is profitable, mergers among two or more standalone firms 

to form a single cartel may or may not be profitable as compared to their Nash equilibrium 

payoffs. 

     It is noteworthy that propositions 7 and 8, unlike Proposition 6, do not require the firms to 

be identical, but require the  capacity constraints to be equal to their Nash equilibrium 

outputs. Restriction to these capacity constraints plays a crucial role in making the 

corresponding partition function game partially superadditive. For higher capacity constraints 

the standalone firms may produce so much more that the merger of all existing cartels will no 

longer be profitable, as seen in Example 1. Thus, merger of all cartels may become 

unprofitable overtime as the outside firms expand their capacities to produce more.  

     It may be also noted that if the firms are sufficiently heterogeneous, then the strong-core 

payoff vectors may require, as do the 𝛾-core payoff vectors in a different context (Chander 

and Tulkens, 1997), transfers between firms to balance the gains and losses from the merger 

to monopoly: for some firms the gains from higher prices may be higher than their losses due 

to their lower production and for others the opposite may be the case.12  

																																																													
12 However, mergers that require transfers between firms may be easier to detect and prevent. 
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     Proposition 8 can be shown to hold also for capacity constraints that are lower than the 

Nash equilibrium outputs, but not “too low”. This is because capacity constraints that are 

lower than the Nash equilibrium outputs but are not too low would also be binding for the 

outside firms but not for the firms in the merged cartels. However, if they are too low, then 

they become binding also for some or all firms in the merged cartels and Proposition 8 can no 

longer be shown to hold.  

  

4. An additional interpretation of the strong-core    

Since the strong-core seems to be of general interest, I offer an additional interpretation of the 

strong core. This additional interpretation comes from the fact that partitions in which some 

non-singleton coalition is worse-off relative to a strong-core payoff vector are not stable in 

the sense that they are “farsightedly” dominated by the strong-core payoff vector itself. This 

means that in any partition that may possibly form subsequent to a deviation either the 

deviating coalition is immediately worse-off or farsightedly not better-off. We now make this 

precise by formally introducing a notion of farsighted dominance in partition function games. 

 

4.1 Farsighted dominance 

A central idea underlying the notion of farsighted dominance is that the players may form a 

new partition from an existing one and each coalition in the new partition may freely and 

independently choose its part of the feasible payoff vector. More specifically, coalitions in a 

partition may split or merge to form a new partition. Some of the coalitions involved in this 

process may be thought of as “perpetrators” in the formation of the new partition and others 

as “residual” coalitions of players left behind by the perpetrators. Formally, let 𝑃 =

{𝑆0, … , 𝑆1} be an existing partition, then 𝑃e is a partition formed from 𝑃 if there is a coalition 

𝑇 such that 𝑃e = {𝑇, 𝑆0\𝑇,… , 𝑆1\𝑇} where coalition 𝑇 is the perpetrator and coalitions 

𝑆3\𝑇, 𝑖 = 1,… ,𝑚, are the residuals. We shall denote formation of a partition 𝑃e with a 

feasible payoff vector 𝑦e from an existing partition 𝑃 with a feasible payoff vector 𝑦 by  

𝑦, 𝑃
R
𝑦e, 𝑃e , 

where 𝑇 is the perpetrator and 𝑦e	is the feasible payoff vector chosen independently by the 

coalitions in the new partition 𝑃e – the perpetrator 𝑇, like other coalitions in the partition 𝑃e, 

chooses only its part of 𝑦e. Since the worth of a coalition in a partition function game 
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depends on the entire partition, the worth of even those coalitions that are “untouched” by the 

move of perpetrator 𝑇 may change, necessitating adjustments, by them, even in their parts of 

the feasible payoff vector.  It is worth considering the two extreme cases: a player leaves a 

coalition and forms a singleton coalition, i.e., 𝑇 = 1 or all coalitions merge, i.e., 𝑇 =

∪3<01 𝑆3 = 𝑁 and, thus, each 𝑆3\𝑇 = ∅, 𝑖 = 1,… ,𝑚. In the latter case, I shall follow the 

convention that 𝑁, ∅,… , ∅ ≡ 𝑁 . 

 

Definition 5 A payoff vector (𝑦, 𝑃), 𝑃 ≠ 𝑁,	is farsightedly dominated by a payoff vector 

(𝑥, 𝑁) if there is a sequence of payoff vectors 𝑦p, 𝑃p , 𝑦0, 𝑃0 , … , 𝑦~, 𝑃~ , where 

𝑦p, 𝑃p = (𝑦, 𝑃) and 𝑦~, 𝑃~ = 𝑥,𝑁 , and a sequence of coalitions 𝑇� such that for each 

ℎ = 1,… , 𝑞: 𝑦��0, 𝑃��0
R�

𝑦�, 𝑃�  and 𝑥3 ≥ 𝑦3��0 for each 𝑖 ∈ 𝑇�. 

 

     In words, there could be several steps in moving from the feasible payoff vector 

𝑦, 𝑃 , 𝑃 ≠ 𝑁, to the feasible payoff vector 𝑥, 𝑁 . Since, by our convention, each player 

prefers to be a member of the grand coalition than of a coalition in a partition other than the 

grand coalition even if its payoff is the same, farsighted dominance requires that every 

member of each coalition that makes a move at some step must be better-off at the end of the 

process. What matters to the members of coalitions involved in moving the process are their 

“final” payoffs – and not their payoffs at intermediate stages.13  

     The above notion of farsighted dominance is similar to that in Harsanyi (1974), but differs 

in two important respects. First, it is defined for a partition function game whereas Harsanyi’s 

notion of farsighted dominance and its elegant modification, as motivated and proposed by 

Ray and Vohra (2015), are both defined for characteristic function games, which as noted 

above are a special case of partition function games. Second, like the modification by Ray 

and Vohra (2015), it is both non-coercive and respects coalitional sovereignty, since by 

definition of a feasible payoff vector for a partition, 𝑦3�3∈K = 𝑣(𝑆; 𝑃�) for each 𝑆 ∈ 𝑃�, ℎ =

1,… , 𝑞, and each coalition in each partition 𝑃� in the sequence is free to decide independently 

its part of the payoff vector 𝑦�. 14 A third point is that the definition can be extended to allow 

																																																													
13 See Page Jr. et al. (2005) for a related but different concept of farsighted dominance in which payoffs at 

intermediate stages matter.  
14 In contrast, Harsanyi’s (1974) notion of farsighted dominance, as Ray and Vohra (2015) note, is both coercive 

and violates coalitional sovereignty. 
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for more than one perpetrator at each step of the sequence. All results below hold in this case 

as well, but for concreteness I assume that there is only one perpetrator at each step. 

   

Proposition 9 Let (𝑥, 𝑁) be a strong-core payoff vector for a partition function game 𝑁, 𝑣 . 

Then every feasible payoff vector 𝑦, 𝑃 , 𝑃 ≠ 𝑁, that may possibly be chosen subsequent to a 

deviation from 𝑥, 𝑁 , is farsightedly dominated by 𝑥, 𝑁 . 

Proof: I first prove that if 𝑃 = 𝑁 , then 𝑥3 ≥ 𝑣 𝑖; 𝑁 , 𝑖 = 1,… , 𝑛. Suppose the finest 

partition [𝑁] is formed subsequent to a deviation by a singleton coalition 𝑖 .  Then since 

(𝑥, 𝑁) is a strong-core payoff vector and no coalition in the finest partition is a non-singleton, 

it follows that the deviating coalition {𝑖} itself must be worse-off, i.e.,  𝑣 𝑖; 𝑁 ≤ 𝑥3. Since 

this is true for every 𝑖, it follows that 𝑥3 ≥ 𝑣 𝑖; 𝑁 , 𝑖 = 1,… , 𝑛. 

     Let 𝑃 = 𝑆0, … , 𝑆1 ≠ 𝑁 be a partition formed subsequent to a deviation by a (singleton 

or non-singleton)  coalition and let 𝑦p, 𝑃p ≡ 𝑦, 𝑃 . If 𝑃 = 𝑁 , then (𝑦p, 𝑃p)
Rj
	(𝑦0, 𝑃0) ≡

(𝑥, 𝑁), where 𝑇0 =∪5<01 𝑆5 = 𝑁, and  𝑦30 = 𝑥3 ≥ 𝑦3p = 𝑦3 for each 𝑖 ∈ 𝑇0 = 𝑁, since 𝑥3 ≥

𝑣 𝑖, 𝑁 = 𝑦3, 𝑖 = 1,… , 𝑛. Thus, 𝑥, 𝑁  farsightedly dominates 𝑦, 𝑃 , if 𝑃 = 𝑁 . If 𝑃 ≠

𝑁 , then 𝑃p includes at least one non-singleton coalition which is worse-off and, thus, at 

least one member of the coalition is worse-off, i.e., 𝑦3p ≤ 𝑥3 for at least some 𝑖. Let 𝑇0 = 𝑖 , 

𝑃0 = 𝑇0, 𝑆0\𝑇0, … , 𝑆1\𝑇0 , and 𝑦0 be a feasible payoff vector for the partition 𝑃0. If 𝑃0 =

𝑁 , then 𝑦p, 𝑃p
Rj

𝑦0, 𝑃0
R�

𝑦a, 𝑃a = 𝑥,𝑁 , where 𝑇a = 𝑇0 ∪∪5<01 𝑆5\𝑇0 = 𝑁, and 

𝑦3p ≤ 𝑥3 and 𝑦50 ≤ 𝑥5, 𝑗 ∈ 𝑇a = 𝑁, since  𝑥3 ≥ 𝑣 𝑖, 𝑁 = 𝑦30, 𝑖 = 1,… , 𝑛. Thus, 𝑥, 𝑁  

farsightedly dominates 𝑦, 𝑃 .	If 𝑃0 ≠ 𝑁, then, proceeding similarly, there exists a sequence 

𝑦p, 𝑃p
Rj

𝑦0, 𝑃0
R�

𝑦a, 𝑃a
R�
…
R��j

𝑦~�0, 𝑃~�0
R�

𝑦~, 𝑃~ = 𝑥,𝑁 , where 𝑇� =

1, ℎ = 1,… , 𝑞 − 1, 𝑇~ = 𝑁, and 𝑦5� ≤ 𝑥5, 𝑗 ∈ 𝑇�, ℎ = 1,… , 𝑞. Thus, 𝑥, 𝑁  farsightedly 

dominates 𝑦, 𝑃 .                                                                                                                        ■ 

 

     The proposition implies that no partial cartel in an industry may be stable if the firms are 

farsighted and conservative. An example can help illustrate the role played by farsightedness 

in the determination of the strong-core. 

 

Example 2 Let 𝑁 = 1,2,3,4  and 𝑣 𝑆; 𝑃 = 𝑆 U 𝑁 − 𝑃 , 𝑆 ⊂ 𝑁. 
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     In this game, 𝑣 𝑁;𝑁 = 192, 𝑣 𝑖; 𝑁 = 0, and it is easily seen that the feasible payoff 

vector (0,64,64,64) belongs to the strong-core. In particular, if coalition {1} deviates from 

(0,64,64,64), then at least one non-singleton coalition is worse-off in each partition 𝑃 ≠ 𝑁 

of which 1  is a member: 𝑣(𝑁\1; 1, 𝑁\1} = 54 < 64 + 64 + 64 (since 𝑁\1 = 3	and 

𝑃 = 2) and for every two-player coalition 𝑆 ⊂ 2,3,4 , we have 𝑣 𝑆; 1, 𝑆, 𝑁\𝑆\1 = 8 <

64 + 64 (since 𝑆 = 2 and 𝑃 = 3). Finally, coalition {1} itself is worse-off in the finest 

partition, since its payoff in the finest partition is the same as in the payoff vector 

(0,64,64,64) that is feasible for the grand coalition and, by our convention, a coalition is 

worse off in a partition other than the grand coalition if its payoff is the same as in the grand 

coalition. Similarly, for deviations by other coalitions from 0,64,64,64 . 

    It is worth noting that if the singleton coalition {1} deviates from the feasible payoff vector 

(0,64,64,64), it cannot be sure that partition {1, 𝑁\1} will surely form and the payoff will be 

according to the payoff vector (2, 18,18,18) that is feasible for 1, 𝑁\1 . This is because the 

partition 1, 𝑁\1  is not stable and the payoff vector (2, 18,18,18) is farshightedly dominated 

by the strong-core payoff vector 0,64,64,64 . In other words, if coalition {1} deviates from 

the grand coalition and the payoff vector is 0,64,64,64 , then since the residual coalition 

{2,3,4} is worse-off, it can deter the deviation by {1} by first breaking apart, resulting in 

payoffs 0,0,0,0 , and then proposing the payoff vector (0,64,64,64) that is feasible for the 

grand coalition and a strict Pareto improvement over 0,0,0,0 , including for 1 , since by our 

convention a coalition is better-off in the grand coalition even if its payoff is the same as in a 

coalition in a partition other than the grand coalition. 

                                                                                                         

5. Conclusion 

From a game theory perspective, we have introduced a new core concept for partition 

function games and established its many properties. Unlike the previous core concepts, the 

new concept, labelled the strong-core, makes no ad hoc assumption regarding the coalitions 

that may form subsequent to a deviation from the grand coalition. Thus, it seems to settle a 

long standing debate on which core concept to use for partition function games.  

     It was shown that the strong-core is nicely related to the familiar 𝛾- and 𝛿- cores in that for 

games with positive externalities, 𝛿-core ⊂ strong-core ⊂ 𝛾-core; for games with negative 

externalities, strong-core = 𝛾-core ⊂ 𝛿-core; and for games in general, strong-core ⊂ 𝛾-core. 
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Apart from showing that the strong-core is consistent with the familiar 𝛾- and 𝛿- cores, these 

inclusion relationships are important also because they have implications for the existence of 

a nonempty strong-core. In particular, they imply that for games with positive (negative) 

externalities, the strong-core is nonempty if the 𝛿-core (𝛾-core) is nonempty; and non-

emptiness of the 𝛾-core is both a necessary and sufficient condition in games with negative 

externalities and a necessary condition for non-emptiness of the strong-core in games in 

general. Since existence of a non-empty 𝛿- or 𝛾- core can be established by applying the 

Bondareva-Shapley theorem (Bondareva,1963 and Shapley, 1967) and in applications most 

games exhibit either positive or negative externalities, the inclusion relationships and the 

Bondareva-Shapley theorem can be used to prove existence of a non-empty strong-core. 

Although establishing existence of a nonempty strong-core is undeniably important, it may be 

noted that an empty strong-core is also of significance for it implies that the grand coalition is 

unlikely to be formed and sustained. 

     I have focused on an application to a Cournot oligopoly because almost every study on 

partition function games or games with externalities invariable refers to this game. But as 

mentioned in fn.7, the strong-core has additional applications. I do not pursue the additional 

applications here as they require different models and leave them for a future research 

project.     

     From an industrial organization perspective, the analysis of an oligopoly in this paper 

complements Salant et al. (1983) in that it is concerned with stability of cartels, especially of 

the merger-to-monopoly, which has received little attention in the literature so far. The basic 

approach in the paper is the same as in Salant et al. – only the question addressed is different. 

We have shown that firms in a Cournot oligopoly not only have incentives to merge to 

monopoly, but the merger is also stable in both long and short runs, since a non-empty 

strong-core is a sufficient condition for stability of the grand coalition. This was shown in a 

model with general demand and cost functions and any finite number of firms. I assumed 

strictly convex cost functions because some scholars justifiably consider constant marginal 

costs a relatively less interesting case (see e.g. Perry and Porter, 1985). However, the analysis 

in this paper can be shown to hold also in the case of identical constant marginal costs. This 

is because with constant marginal costs forming cartels/coalitions is less profitable for the 

cartels but more profitable for the standalone firms outside the cartels, implying lower 
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profits/payoffs for cartels/coalitions and thus raising the possibility of a nonempty strong-

core.    

     It was shown that the merger-to-monopoly is stable also if the oligopolistic firms face 

specific capacity constraints that are not only natural and less arbitrary, but also lead to the 

interesting result that the merger of all existing cartels when the firms, inside or outside the 

cartels, cannot expand their production capacities will lower the total industry output but lead 

to higher profits for the firms both inside and outside the cartels because of higher prices. 

However, the merger of all cartels may become unprofitable over time, as the firms outside 

the cartels may expand their production capacities.  

 

Appendix 

Proof of Lemma 5: Since each 𝜋3 .  is concave and continuous in 𝑞0, … , 𝑞F and each 𝐴3 is 

compact and convex, the game 𝑁, 𝐴, 𝜋  admits a Nash equilibrium (𝑞0, … , 𝑞F). Suppose 

contrary to the assertion that the game has another Nash equilibrium, say (𝑞0, … , 𝑞F), and 

(𝑞0, … , 𝑞F) ≠ (𝑞0, … , 𝑞F). Without loss of generality, let 𝑞 = 𝑞33∈H ≥ 𝑞33∈H = 𝑞. Since 

(𝑞0, … , 𝑞F) ≠ (𝑞0, … , 𝑞F), 𝑞3 > 𝑞3 for at least one 𝑖. Furthermore, 𝑝e 𝑞 𝑞3 + 𝑝 𝑞 >

𝑝e 𝑞 𝑞3 + 𝑝 𝑞 ≥ 𝑝e 𝑞 𝑞3 + 𝑝 𝑞 , since 𝑞 ≥ 𝑞 and by assumption the marginal revenue of 

each firm is non-increasing with total demand 𝑞. From the first order conditions for a Nash 

equilibrium 𝑐3e 𝑞3 = 𝑝e 𝑞 𝑞3 + 𝑝 𝑞 > 𝑝e 𝑞 𝑞3 + 𝑝 𝑞 = 𝑐3e(𝑞3) implying 𝑞3 < 𝑞3, which is 

a contradiction.                                                                                                                          ∎ 
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