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Abstract 

In this paper, we introduce a concept of a farsighted stable set for a partition function game and 
interpret the union of all farsighted stable sets as the core of the game, to be called the strong-
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all farsighted stable sets) is nicely related to two previous core concepts for partition function 
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showing that every farsighted stable set can be supported as an equilibrium outcome of an 
infinitely repeated game.  
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1. Introduction  

In the cooperative approach to game theory, the conventional game primitive is a characteristic 

function which, if utilities are transferable, assigns a real number to each coalition -- called the 

worth of the coalition. But a characteristic function cannot model situations in which the payoff 

of each coalition depends on other coalitions that may form in the complement. In fact, 

externalities from coalition formation are an important feature of many situations for which the 

cooperative approach to game theory otherwise appears appropriate. E.g., an important feature of 

treaties on climate change, such as the Kyoto Protocol, is that the signatories’ payoffs depend not 

only on the actions taken by them but also on actions taken by the non-signatories. Similarly, 

benefits from mergers in oligopolistic markets depend on how the other outside firms react. The 

partition function (Thrall and Lucas, 1963) is a way of presenting information about these 

externalities. A partition function, if utility is transferable, also assigns a real number to each pair 

comprising a coalition and a partition to which the coalition belongs – called the worth of the 

coalition in the partition.  Since the worth of each coalition in a game in characteristic function 

form is independent of what other coalitions form, they are special cases of games in partition 

function form. 

      In view of the generality and applications of the partition function games, a recently active 

literature is concerned with extensions of the solution concepts for characteristic function games 

to partition function games. But other than the extensions of the core and the Shapley value1, no 

similar extension seems to have been proposed for stable sets -- introduced originally by von 

Neumann and Morgenstern (1944) as a solution for characteristic function games, and modified 

later by Harsanyi (1974) and Ray and Vohra (2014). That is perhaps because until recently there 

were few persuasive applications of the stables sets. But with the publication of Ray and Vohra 

(2014), interest in stable sets seems to have revived. They show that the farsighted stable sets, 

proposed as a modification of the stable sets in Harsanyi (1974), are applicable to the important 

class of simple games among others and closely related to the core of the game in that every 

farsighted stable set consists of a single core payoff vector and the union of all farsighted stable 

sets is “almost” equal to the core.  

                                                 
1 See Chander and Tulkens (1997), Maskin (2003), and Hafalir (2007) for extensions of the core and Maskin (2003), 
de Clippel and Serrano (2008), and McQuillin (2009) among others for extensions of the Shapley value. 
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     In this paper, we motivate and introduce farsighted stable sets for a partition function game 

and interpret the union of all farsighted stable sets as the core of the game, to be called the 

strong-core, which reduces to the traditional core if the worth of every coalition is independent of 

the partition to which it belongs and the game is adequately represented by a characteristic 

function. We show that every farsighted stable set of a partition function game, like that of a 

characteristic function game, is a singleton, and the strong-core (i.e. the union of all farsighted 

stable sets) is nicely related to two previous core concepts, namely, the 𝛾- and the 𝛿- cores of 

partition function games. More specifically, we show that the strong-core is a stronger concept 

than the 𝛾-core, i.e., the strong-core ⊂ 𝛾-core in general and provide an example in which the 

inclusion is strict.   

     Since in most applications partition function games can be classified as games with either 

negative or positive externalities (see Yi, 1997, Maskin, 2003, and Hafalir, 2007 among others 

for this classification), we characterize the strong-core separately for each of these classes. For 

games with positive externalities, we show that the strong-core is a strictly weaker concept than 

the 𝛿-core but a strictly stronger concept than the 𝛾-core, i.e., 𝛿-core ⊂ strong-core ⊂ 𝛾-core and 

there are examples in which both inclusions are strict. For games with negative externalities, we 

show that the strong-core is a strictly stronger concept than the 𝛿-core, but equal to the 𝛾-core, 

i.e., 𝛾-core ⊂ strong-core ⊂ 𝛿-core and there are examples in which the second inclusion is strict. 

Since the strong-core ⊂ 𝛾-core in general, it follows that for games with negative externalities 

the first inclusion is not strict and the strong-core coincides with the 𝛾-core. Thus, for partition 

function games which can be classified as games with positive or negative externalities, the 

strong-core sits strictly between the 𝛾- and 𝛿- cores except in the case of negative externalities 

when it is equivalent to the 𝛾-core, but strictly smaller than the 𝛿-core.  

     Since the sufficient conditions for the existence of a traditional core of a characteristic 

function game are known to be also sufficient for the existence of nonempty 𝛾- and 𝛿- cores, the 

above characterization of the strong-core implies that in games with positive or negative 

externalities the same conditions are also sufficient for the existence of a non-empty strong-core 

and, therefore, also for the existence of the farsighted stable sets. However, for completeness, we 

also derive sufficient conditions for the existence of a nonempty strong-core for games which do 

not exhibit positive or negative externalities. More specifically, we introduce a notion of partial 
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superadditivity which is weaker than superadditivity and show that in partially superadditive 

partition function games, the strong-core is equal to the 𝛾-core and, therefore, the well-known 

necessary and sufficient condition for a characteristic function game to admit a nonempty core is 

also necessary and sufficient for the existence of a nonempty strong-core and, thus, for the 

existence of a farsighted stable set. As will be shown, this sufficient condition is weaker than a 

previous sufficient condition for a partition function game to admit a nonempty 𝛾-core (Hafalir, 

2007: Proposition 2). In addition, we show that convexity of a partition function game is also 

sufficient for the existence of a nonempty strong-core and, thus, of a farsighted stable set.  

     A growing branch of the literature seeks to unify cooperative and non-cooperative approaches 

to game theory through underpinning cooperative game theoretic solutions with non-cooperative 

equilibria, the “Nash Program” for cooperative games.2 In the same vein, we show that each 

farsighted stable set can be supported as an equilibrium outcome of a non-cooperative game.  

This game is intuitive and consists of infinitely repeated two-stages. In the first stage of the two-

stages, which begins from the finest partition as the status quo, each player announces whether 

he wishes to stay alone or form a nontrivial coalition with the other players. In the second stage 

of the two-stages, the players form a partition as per their announcements. The two-stages are 

repeated if the outcome of the second stage is the finest partition from which the game began in 

the first place.     

The paper is organized as follows. In Section 2, we introduce the notation and definition of 

farsighted stable sets for partition function games and interpret the union of the farsighted stable 

sets as the strong-core. We show that a prominent class of partition function games admit 

nonempty strong-cores and, thus, there exists a farsighted stable set for these games. In Section 

3, we consider partition function games with negative or positive externalities and characterize 

the strong-core relative to the 𝛾- and 𝛿- cores. In section 4, we introduce the notion of a partial 

superadditive game and introduce two sufficient conditions for the existence of a nonempty 

strong-core and, therefore, a farsighted stable set. In Section 5, we introduce an infinitely 

                                                 
2 Analogous to the microfoundations of macroeconomics, which aim at bridging the gap between the two branches 
of economic theory, the Nash program seeks to unify the cooperative and non-cooperative approaches to game 
theory. Numerous papers have contributed to this program including Rubinstein (1982), Perry and Reny (1994), 
Pérez-Castrillo (1994), Compte and Jehiel (2010), and Lehrer and Scarsini (2013) among others. 
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repeated coalition formation game. We show that every farsighted stable set can be supported as 

an equilibrium outcome of the game. Section 6 draws the conclusion. 

 

2. Farsighted stable sets for partition function games  

 Let 𝑁 = {1, … ,𝑛},𝑛 ≥ 3, denote the set of players. A set  𝑃 = {𝑆1, … , 𝑆𝑚} is a partition of 𝑁 if 

𝑆𝑖 ∩ 𝑆𝑗 = ∅ for all 𝑖, 𝑗 = 1, … ,𝑚, 𝑖 ≠ 𝑗, and ∪𝑖=1𝑚 𝑆𝑖 = 𝑁. We shall denote the finest partitions of 

𝑁, 𝑆, and 𝑁\𝑆 by [𝑁], [𝑆], and  [𝑁\𝑆], respectively, the cardinality of set 𝑆 by |𝑆|, and  (to save 

on notation) the sets {𝑖}, {𝑆},{𝑁\𝑆}, and {𝑁} simply by 𝑖, 𝑆,𝑁\𝑆, and 𝑁, respectively, whenever 

no confusion is possible. 

     A partition function is a real valued function of a coalition and a partition and denoted by 

𝑣(𝑆;𝑃) where 𝑃 is a partition of 𝑁 and 𝑆 is a member of 𝑃. We shall denote a partition function 

game by a pair (𝑁, 𝑣). Since the worth of a coalition in a partition function game depends on the 

partition to which the coalition belongs, the partition function games are sometimes referred to as 

games with externalities. A partition function game in which the worth of every coalition is 

independent of the partition and depends only on the coalition can be considered as a special case 

and adequately represented by a characteristic function, i.e., by a game which is “externalities 

free”.  

     Given a partition function game (𝑁, 𝑣), a feasible payoff vector is a vector 𝑥 = (𝑥1, … , 𝑥𝑛) 

such that ∑ 𝑥𝑖𝑖∈𝑁 = 𝑣(𝑁; {𝑁}). In words, a feasible payoff vector represents a division of the 

worth of the grand coalition. Similarly, a vector 𝑦 = (𝑦1, … ,𝑦𝑛) is a feasible payoff vector for a 

partition 𝑃 = {𝑆1, … , 𝑆𝑚} if ∑ 𝑦𝑘𝑘∈𝑆𝑖 = 𝑣(𝑆𝑖;𝑃), 𝑖 = 1, … ,𝑚. Thus, a feasible payoff vector for a 

partition permits transfers among the members of each coalition in the partition, but not across 

the coalitions.3 We assume throughout the paper that each coalition in a partition is free to decide 

its part of the feasible payoff vector. Thus, a feasible payoff vector for a partition respects both 

“feasibility” and “coalitional sovereignty”: the two natural requirements that, as emphasized by 

Ray and Vohra (2014), must be satisfied by a farsighted stable set. To indicate the partition for 

                                                 
3 This means that the payoff of a coalition in a feasible payoff vector for a partition is equal to its worth in the 
partition.  
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which a payoff vector is feasible, we shall henceforth denote a feasible payoff vector 𝑥 by (𝑥,𝑁) 

and a payoff vector 𝑦 which is feasible for partition 𝑃 by (𝑦,𝑃).  

          A partition function game (𝑁, 𝑣) is grand-coalition superadditive if the worth of the grand 

coalition is at least as large as the sum of the worths of coalitions in any partition, i.e., 

𝑣(𝑁; {𝑁}) ≥ ∑ 𝑣(𝑆𝑖;𝑃)𝑆𝑖∈𝑃  for every partition 𝑃 = {𝑆1, … , 𝑆𝑚}. Thus, if a partition function 

game is grand-coalition superadditive, then formation of the grand coalition is optimal and 

∑ 𝑥𝑖𝑖∈𝑁 ≥ ∑ 𝑦𝑖𝑖∈𝑁  for any feasible payoff vectors (𝑥,𝑁) and (𝑦,𝑃). This means that if (𝑁, 𝑣) is 

grand-coalition superadditive, then in every partition 𝑃 there is at least one (singleton or non-

singleton) coalition 𝑆 which is “worse-off”, i.e. 𝑣(𝑆;𝑃) ≤ ∑ 𝑥𝑖𝑖∈𝑆  for some coalition 𝑆 ∈ 𝑃. 

2.1 Farsighted dominance 

     The objective of this section is to define farsighted dominance by feasible payoff vectors, i.e., 

by payoff vectors which are feasible for the grand coalition. A central idea underlying this notion 

is that the players may form a new partition from an existing one and each coalition in the new 

partition may adjust accordingly its part of the feasible payoff vector. More specifically, 

coalitions in a partition may split or merge to form a new partition. Some of the coalitions 

involved in this process may be thought of as “perpetrators” in the formation of the new partition 

and others might be “residual” coalitions of players left behind by the perpetrators. Formally, let 

𝑃 = {𝑆1, … , 𝑆𝑚} be an existing partition, then 𝑃′ is a partition formed from 𝑃 if there is a 

coalition 𝑇 such that 𝑃′ = {𝑇, 𝑆1\𝑇, … , 𝑆𝑚\𝑇} where coalition 𝑇 is the perpetrator and coalitions 

𝑆𝑖\𝑇, 𝑖 = 1, … ,𝑚, are the residuals. We shall denote formation of a partition 𝑃′ with a feasible 

payoff vector 𝑦′ from an existing partition 𝑃 with a feasible payoff vector 𝑦 by  

(𝑦,𝑃)
𝑇
→ (𝑦′,𝑃′), 

where 𝑇 is the perpetrator and 𝑦′ is the feasible payoff vector independently chosen by the 

coalitions in the new partition 𝑃′.4 It is worth considering the two extreme cases: a player leaves 

                                                 
4 Since the worth of a coalition in a partition function game depends on the partition, the worth of even those 
coalitions which are “untouched” by the move of 𝑇 may change, necessitating adjustments even in their parts of the 
feasible payoff vector.   
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a coalition and forms a singleton coalition, i.e., |𝑇| = 1 or all coalitions merge, i.e., 𝑇 =

∪𝑖=1𝑚 𝑆𝑖 = 𝑁 and, thus, each 𝑆𝑖\𝑇 = ∅, 𝑖 = 1, … ,𝑚. 5 

     In order to rule out indifference on the part of coalitions or their members, we henceforth 

adopt the convention that the players strictly prefer to be members of the grand coalition than to 

be members of a coalition in a partition other than the grand coalition even if their payoffs are 

the same, i.e., player 𝑖 is “better-off” as a member of the grand coalition with feasible payoff 

vector 𝑥 than as a member of a coalition in a partition 𝑃 ≠ {𝑁} with feasible payoff vector 𝑦 if 

𝑥𝑖 ≥ 𝑦𝑖, but if 𝑃 = 𝑁, i.e., 𝑥 and 𝑦 are both feasible for the grand coalition then player 𝑖 is better-

off under 𝑥 then under 𝑦 only if 𝑥𝑖 > 𝑦𝑖. Accordingly, we define farsighted domination of a 

feasible payoff vector for a partition other than the grand coalition separately from that of a 

feasible payoff vector for the grand coalition.    

     A feasible payoff vector (𝑥,𝑁) farsightedly dominates a feasible payoff vector (𝑦,𝑃), 

𝑃 ≠ {𝑁}, if there is a sequence of feasible payoff vectors (𝑦0,𝑃0), (𝑦1,𝑃1), … , (𝑦𝑞,𝑃𝑞), where 

(𝑦0,𝑃0) = (𝑦,𝑃) and (𝑦𝑞,𝑃𝑞) = (𝑥,𝑁), and a corresponding sequence of coalitions 𝑇ℎ such 

that for each ℎ = 1, … , 𝑞: 

(𝑦ℎ−1,𝑃ℎ−1)
𝑇ℎ
�� (𝑦ℎ,𝑃ℎ) 

and 

𝑥𝑖 ≥ 𝑦𝑖ℎ−1 for each 𝑖 ∈ 𝑇ℎ. 

In words, there could be several steps in moving from the feasible payoff vector (𝑦,𝑃),𝑃 ≠ 𝑁, to 

the feasible payoff vector (𝑥,𝑁). Farsighted dominance requires that every member of each 

coalition that makes a move at some step must be better-off at the end of the process.6 What 

matters to the members of coalitions involved in moving the process are their “final payoffs” – 

and not their payoffs at the intermediate stages. Farsighted dominance of a feasible payoff vector 

by another is defined similarly:  

                                                 
5 We shall follow the convention that {𝑁,∅, … ,∅} ≡ {𝑁}. 
6 Since by our convention, a player prefers to be a member of the grand coalition than of a coalition in a partition 
other than the grand coalition even if the payoffs are the same.  
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     A feasible payoff vector (𝑥,𝑁) farsightedly dominates a feasible payoff vector (𝑥′,𝑁) if there 

is a sequence of feasible payoff vectors (𝑦0,𝑃0), (𝑦1,𝑃1), … , (𝑦𝑞 ,𝑃𝑞), with (𝑦0,𝑃0) = (𝑥′,𝑁) 

and (𝑦𝑞 ,𝑃𝑞) = (𝑥,𝑁), and a corresponding sequence of coalitions 𝑇ℎ such that for each: 

(𝑦ℎ−1,𝑃ℎ−1)
𝑇ℎ
�� (𝑦ℎ,𝑃ℎ), ℎ = 1, … , 𝑞, 

𝑥𝑖 > 𝑥𝑖′, 𝑖 ∈ 𝑇1, and 𝑥𝑖 ≥ 𝑦𝑖ℎ for each 𝑖 ∈ 𝑇ℎ,ℎ = 2, … , 𝑞. 

The inequalities are strict for ℎ = 1, since the members of the initial perpetrator 𝑇1 are (to begin 

with) members  of the grand coalition and, therefore, they will not defect from the grand 

coalition unless their final payoffs are strictly higher . 

 

2.2 Farsighted stable sets for partition function games 

     The above two farsighted dominance relations lead to the following definition of a farsighted 

stable set for a partition function game analogous to a farsighted stable set for a characteristic 

function game.7  

 

Definition 1 A set of feasible payoff vectors 𝐹 is a farsighted stable set for a partition function 

game if it satisfies: 

Internal Stability. No feasible payoff vector in 𝐹 is farsightedly dominated by another feasible 

payoff vector in 𝐹. 

External Stability. Every feasible payoff vector not in 𝐹 is farsightedly dominated by some 

feasible payoff vector in 𝐹. 

     Béal et al. (2008) show that every Harsanyi stable set (Harsanyi, 1974) for a characteristic 

function game  consists of a single imputation. Similarly, Ray and Vohra (2014) motivate and 

introduce a concept of a farsighted stable set for characteristic function games and show that 

every farsighted stable set consists of a single core payoff vector. Now we show that a farsighted 

stable set for a partition function game also consists of a single feasible payoff vector. 

     

                                                 
7 Also see Chwe (1994) and Béal et al. (2008) among others. 
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Theorem 1 Given a partition function game (𝑁, 𝑣), a singleton set containing a feasible payoff 

vector (𝑥,𝑁)is a farsighted stable set if (i) for every partition 𝑃 = {𝑆1, … , 𝑆𝑚} ≠ [𝑁], ∑ 𝑥𝑗𝑗∈𝑆𝑖 ≥

𝑣(𝑆𝑖;𝑃) for at least one non-singleton coalition 𝑆𝑖 ∈ 𝑃 and (ii) for the finest partition [𝑁], 

𝑥𝑖 ≥ 𝑣(𝑖; [𝑁]), 𝑖 = 1, … ,𝑛. 

Proof: Let (𝑥,𝑁) be a feasible payoff vector as hypothesized. We prove that {𝑥} satisfies both 

internal and external stability. A singleton set trivially satisfies internal stability as there are no 

two distinct feasible payoff vectors in the set and consequently there is no possibility of 

farsighted dominance of 𝑥 by another feasible payoff vector in the set. We prove external 

stability in two parts: (a) each (𝑥,𝑁) as hypothesized farsightedly dominates every feasible 

payoff vector (𝑦,𝑃),𝑃 ≠ 𝑁, and (b) each (𝑥,𝑁) farsightedly dominates every other feasible 

payoff vector (𝑥′,𝑁).  

     (a) Let 𝑃 = {𝑆1, … , 𝑆𝑚} ≠ 𝑁 and (𝑦0,𝑃0) ≡ (𝑦,𝑃). If 𝑃 = [𝑁], then (𝑦0,𝑃0)
𝑇1
�� (𝑦1,𝑃1) ≡

(𝑥,𝑁), where 𝑇1 =∪𝑗=1𝑚 𝑆𝑗 = 𝑁, and  𝑦𝑖1 = 𝑥𝑖 ≥ 𝑦𝑖0 = 𝑦𝑖 for each 𝑖 ∈ 𝑇1 = 𝑁, since 𝑥𝑖 ≥

𝑣(𝑖, [𝑁]) = 𝑦𝑖 , 𝑖 = 1, … , 𝑛. Thus, (𝑥,𝑁) farsightedly dominates (𝑦,𝑃), if 𝑃 = [𝑁]. If 𝑃 ≠ [𝑁], 

then 𝑃0 includes at least one non-singleton coalition such that at least one member of the 

coalition is worse-off, i.e., 𝑦𝑖0 ≤ 𝑥𝑖 for at least some 𝑖. Let 𝑇1 = {𝑖}, 𝑃1 = {𝑇1, 𝑆1\𝑇1, … , 𝑆𝑚\

𝑇1}, and 𝑦1 be a feasible payoff vector for the partition 𝑃1. If 𝑃1 = [𝑁], then (𝑦0,𝑃0)

𝑇1
�� (𝑦1,𝑃1)

𝑇2
�� (𝑦2,𝑃2) = (𝑥,𝑁), where 𝑇2 = 𝑇1 ∪∪𝑗=1𝑚 𝑆𝑗\𝑇1 = 𝑁, and 𝑦𝑖0 ≤ 𝑥𝑖 and 𝑦𝑗1 ≤

𝑥𝑗 , 𝑗 ∈ 𝑇2 = 𝑁, since  𝑥𝑖 ≥ 𝑣(𝑖, [𝑁]) = 𝑦𝑖1, 𝑖 = 1, … ,𝑛. Thus, (𝑥,𝑁) farsightedly dominates 

(𝑦,𝑃). If 𝑃1 ≠ 𝑁, then, proceeding similarly, there exists a sequence (𝑦0,𝑃0)
𝑇1
�� (𝑦1,𝑃1)

𝑇2
�� (𝑦2,𝑃2)

𝑇3
�� …

𝑇𝑞−1
�⎯� (𝑦𝑞−1,𝑃𝑞−1)

𝑇𝑞
�� (𝑦𝑞 ,𝑃𝑞) = (𝑥,𝑁), where |𝑇ℎ| = 1,ℎ = 1, … , 𝑞 − 1,𝑇𝑞 =

𝑁, and 𝑦𝑗ℎ ≤ 𝑥𝑗 , 𝑗 ∈ 𝑇ℎ,ℎ = 1, … , 𝑞. Thus, (𝑥,𝑁) farsightedly dominates (𝑦,𝑃). 

     (b) Since (𝑥,𝑁) and (𝑥′,𝑁) are both feasible payoff vectors and (𝑥,𝑁) ≠ (𝑥′,𝑁), we have 

𝑥𝑖′ < 𝑥𝑖 for at least some 𝑖. Let 𝑇1 = {𝑖}, 𝑃1 = {𝑖,𝑁\𝑖} and 𝑦1 a feasible payoff vector for the 

partition 𝑃1. Then, there  exists a sequence  (𝑦1,𝑃1)
𝑇2
�� (𝑦2,𝑃2)

𝑇3
�� …

𝑇𝑞−1
�⎯� (𝑦𝑞−1,𝑃𝑞−1)

𝑇𝑞
�� (𝑦𝑞 ,𝑃𝑞) = (𝑥,𝑁), where |𝑇ℎ| = 1,ℎ = 1, … , 𝑞 − 1,𝑇𝑞 = 𝑁, and 𝑦𝑗ℎ ≤ 𝑥𝑗 , 𝑗 ∈ 𝑇ℎ,ℎ =

1, … , 𝑞. But this implies that there also exists a sequence (𝑥′,𝑁) = (𝑦0,𝑃0)
𝑇1
�� (𝑦1,𝑃1)
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𝑇2
�� (𝑦2,𝑃2)

𝑇3
�� …

𝑇𝑞−1
�⎯� (𝑦𝑞−1,𝑃𝑞−1)

𝑇𝑞
�� (𝑦𝑞 ,𝑃𝑞) = (𝑥,𝑁), where |𝑇ℎ| = 1,ℎ = 1, … , 𝑞 − 1,𝑇𝑞 =

𝑁, 𝑦𝑗ℎ ≤ 𝑥𝑗 , 𝑗 ∈ 𝑇ℎ,ℎ = 2, … , 𝑞, 𝑥𝑖′ < 𝑥𝑖 and 𝑇1 = {𝑖}. Thus (𝑥,𝑁) farsightedly dominates 

(𝑥′,𝑁).   ■ 

 

     It is worth interpreting conditions (i) and (ii) of the theorem. First, condition (i) does not 

follow from grand-coalition superadditivity of the game in that it requires that the “worse-off” 

coalition in a partition must be a non-singleton coalition rather than just any coalition. Second, 

condition (ii) is analogous to individual rationality of imputations in a characteristic function 

game and it indeed reduces to that if the worth of every coalition is independent of the partition 

and the game is adequately represented by a characteristic function. It is also worth noting from 

the proof of the theorem that for any deviation from a feasible payoff vector (𝑥,𝑁) belonging to 

a farsighted stable set to a feasible payoff vector for a partition (𝑦,𝑃), i.e., (𝑥,𝑁)
𝑆
→ (𝑦,𝑃) where 

𝑃 = {𝑆,𝑁\𝑆}, there exists a dominance chain (𝑦,𝑃) = (𝑦0,𝑃0)
𝑇1
�� (𝑦1,𝑃1)

𝑇2
�� (𝑦2,𝑃2)

𝑇3
�� …

𝑇𝑞−1
�⎯� (𝑦𝑞−1,𝑃𝑞−1)

𝑇𝑞
�� (𝑦𝑞 ,𝑃𝑞) = (𝑥,𝑁), where |𝑇ℎ| = 1,ℎ = 1, … , 𝑞 − 1,𝑇𝑞 = 𝑁, and 𝑦𝑗ℎ ≤

𝑥𝑗 , 𝑗 ∈ 𝑇ℎ,ℎ = 1, … , 𝑞, i.e., there exists a dominance chain such that members of the initial 

deviating coalition are not better-off as there final payoffs are the same. In other words, every 

deviation from a feasible payoff vector (𝑥,𝑃) belonging to a farsighted stable set is farsightedly 

“deterred” by (𝑥,𝑃) itself. 

We illustrate the concepts so far by showing that there exists a farsighted stable set in a well-

known class of partition function games. These games are symmetric, grand-coalition 

superadditive, and such that larger coalitions in each partition have lower per-member payoffs 

(see e.g. Ray and Vohra, 1997, Yi, 1997, and Chander, 2007). We show that the feasible payoff 

vector with equal shares is a farsighted stable set.  

  

Theorem 2 Let (𝑁, 𝑣) be a symmetric partition function game such that for every partition 

𝑃 = {𝑆1, … , 𝑆𝑚}, 𝑣(𝑆𝑖;𝑃)/|𝑆𝑖| < (=)𝑣(𝑆𝑗;𝑃)/�𝑆𝑗� if |𝑆𝑖| > (=)�𝑆𝑗�, 𝑖, 𝑗 ∈ {1, … ,𝑚} and 

𝑣(𝑁; {𝑁}) > ∑ 𝑣(𝑆𝑖;𝑃)𝑆𝑖∈𝑃 . Then, the feasible payoff vector with equal shares is a farsighted 

stable set.  
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Proof: Let (𝑥1, … , 𝑥𝑛) be the feasible payoff vector with equal shares, i.e., ∑ 𝑥𝑖𝑖∈𝑁 = 𝑣(𝑁;𝑁) 

and  𝑥𝑖 = 𝑥𝑗 , 𝑖, 𝑗 ∈ 𝑁. We claim that (𝑥1, … , 𝑥𝑛) is a farsighted stable set. 

Let  𝑃 = {𝑆1, … , 𝑆𝑚} ≠ 𝑁 be some partition of 𝑁. If 𝑃 = [𝑁], then 𝑥𝑖 ≥ 𝑣(𝑖; [𝑁]) for all 

{𝑖} ∈ [𝑁], since 𝑣(𝑁;𝑁) > ∑ 𝑣(𝑖; [𝑁])𝑖∈𝑁 , ∑ 𝑥𝑖𝑖∈𝑁 = 𝑣(𝑁;𝑁), 𝑣(𝑖; [𝑁]) = 𝑣(𝑗; [𝑁]), and 

𝑥𝑖 = 𝑥𝑗 for all 𝑖, 𝑗 ∈ 𝑁. If 𝑃 ≠ [𝑁], then the number of coalitions in the partition is 𝑚 ≥ 2,𝑚 <

𝑛. Without loss of generality assume that |𝑆1| ≥ |𝑆2| ≥ ⋯ ≥ |𝑆𝑚|. Thus, 𝑛 > 𝑚 ≥ 2 and 

∑ 𝑣(𝑆𝑖;𝑃)𝑚
𝑖=1 < 𝑣(𝑁;𝑁) = ∑ 𝑥𝑖𝑖∈𝑁 , as hypothesized. This inequality implies 𝑣(𝑆1;𝑃) <

∑ 𝑥𝑖𝑖∈𝑆1 , since 𝑣(𝑆1;𝑃)/|𝑆1| ≤ 𝑣(𝑆𝑗;𝑃)/�𝑆𝑗�  for all 𝑆𝑗 ∈ 𝑃 and 𝑥𝑖 = 𝑥𝑗 , 𝑖, 𝑗 ∈ 𝑁.  Since 𝑛 ≥ 3 

and 𝑃 ≠ [𝑁],𝑁, we must have |𝑆1| ≥ 2. This proves that each partition 𝑃 ≠ [𝑁], includes at least 

one non-singleton coalition which is worse-off relative to the feasible payoff vector with equal 

shares (𝑥1, … , 𝑥𝑛) and 𝑥𝑖 ≥ 𝑣(𝑖; [𝑁]), 𝑖 = 1, … ,𝑛. By Theorem 1, {(𝑥1, … , 𝑥𝑛)} is a farsighted 

stable set.   ■  

 

     The proof of Theorem 1 brings forth a conceptual issue which is common to the concepts of 

farsighted stable sets for both partition and characteristic function games, since it implicitly 

assumes “optimistic behavior” on the part of deviating coalitions in the sense that every 

deviating coalition in a dominance chain is assumed to proceed with the deviation if its members 

are better-off in at least one of the ultimate outcomes, whereas a conservative coalition would not 

proceed with the deviation unless every possible ultimate outcome makes its members better-

off.8 However, in the present context this issue is restricted to dominance chains which begin 

from a feasible payoff vector for the grand coalition and terminate at another feasible payoff 

vector for the grand coalition. If the chain starts from a feasible payoff vector for a partition other 

than the grand coalition, then the members of every deviating coalition in the chain are better-off 

no matter at which farsighted stable set the dominance chain terminates. Thus the problem of 

having to choose between multiple dominance chains can be avoided by defining instead a 

concept of a farsighted conservative stable set as the union of all farsighted stable sets. It is easily 

verified that this set satisfies internal stability if the deviating coalitions are conservative as well 

as external stability, since it is the union of all farsighted stable sets.  In other words, the union of 

                                                 
8 The difficulty of dealing with multiple continuation paths following an initial move also crops up in Greenberg 
(1990) where he discusses “optimistic” and “conservative” notions of dominance. 
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all farsighted stable sets is a farsighted conservative stable set of a partition function game which 

does not assume optimistic behavior on the part of deviating coalitions.9 But we will not pursue 

this interpretation here. Since the union of all farsighted stable sets is closely related to two 

previous core concepts for partition function games, we interpret it instead as a core concept, but 

do not ignore the fact that it is the union of all farsighted stable sets and, thus, a farsighted stable 

set exists if and only if the so-defined core is non-empty.  

         

2.3 Farsighted stable sets and the core  

     The core, proposed by Gillies (1953) almost ten years after von Neumann and Morgenstern 

(1944) introduced the stable sets, is a leading and influential solution concept for characteristic 

function games. But in a partition function game, unlike a characteristic function game, a 

deviating coalition has to take into account what other coalitions may form in the complement 

subsequent to its deviation, since its payoff depends on the entire partition. Therefore, all 

existing core concepts for a partition function game without fail make one or the other ad hoc 

assumption concerning the coalitions that may form in the complement subsequent to a deviation 

-- leading to alternative core concepts depending on the assumption made in this regard. In this 

section, we first review the two most widely used core concepts and then interpret the union of 

all farsighted stable sets as the core, to be called the strong-core of a partition function game, 

which does not assume formation of any particular partition subsequent to a deviation. 

 

Definition 2 The 𝛾-core of a partition function game (𝑁, 𝑣) is the set of all feasible payoff 

vectors (𝑥1, … , 𝑥𝑛) such that in every partition {𝑆, [𝑁\𝑆]}, 𝑆 ⊂ 𝑁, ∑ 𝑥𝑖𝑖∈𝑆 ≥ 𝑣(𝑆; {𝑆, [𝑁\𝑆]}).   

 

The 𝛾-core (Chander and Tulkens, 1997) assumes formation of a specific partition 

subsequent to a deviation from the grand coalition. In particular, it assumes that if coalition 𝑆 

deviates from the grand coalition then the partition {𝑆, [𝑁\𝑆]} forms, and a 𝛾-core payoff vector 

                                                 
9 Since, as noted in the discussion following the proof of Theorem 1, any deviation from a feasible payoff vector 
forming a farsighted stable set is “deterred” by the feasible payoff vector itself, the union of all farsighted stable sets 
can also be seen as a partition function game analog of Chwe’s (1994) largest consistent set of a characteristic 
function game. 



12 
 

is such that the deviating coalition 𝑆 is worse-off in this partition.10 But why should the 

complement of a deviating coalition break apart into singletons? This assumption of the 𝛾-core 

has been much commented upon and debated in the literature and for this reason alternative core 

concepts for partition function games have been proposed.11 

  

Definition 3 The 𝛿-core of a partition function game (𝑁, 𝑣) is the set of feasible payoff vectors 

(𝑥1, … , 𝑥𝑛) such that in every binary partition {𝑆,𝑁\𝑆}, 𝑆 ⊂ 𝑁, ∑ 𝑥𝑖𝑖∈𝑆 ≥ 𝑣(𝑆; {𝑆,𝑁\𝑆}).  

 

    The 𝛿-core (Maskin, 2003), like the 𝛾-core, also assumes formation of a specific partition 

subsequent to a deviation from the grand coalition. Specifically, it assumes that if coalition 𝑆 

deviates from the grand coalition then the binary partition {𝑆,𝑁\𝑆} forms, and a 𝛿-core payoff 

vector is such that the deviating coalition 𝑆 is worse-off in this partition.12  

     All other existing core concepts for partition function games similarly make one or the other 

ad hoc assumption regarding the partition that may form subsequent to a deviation. 13 Apart from 

these concepts, the traditional 𝛼- and 𝛽- cores (Aumann, 1961) not only assume formation of the 

binary partition {𝑆,𝑁\𝑆} subsequent to a deviation by coalition 𝑆, but also that the 

complementary coalition 𝑁\𝑆 takes actions that minmax or maxmin the payoff of the deviating 

coalition 𝑆 without regard to its own payoff.14 

  

Definition 4 The strong-core of a partition function game (𝑁, 𝑣) is the union of all farsighted 

stable sets, i.e., the set of all feasible payoff vectors (𝑥1, … , 𝑥𝑛) such that in every partition 

𝑃 = {𝑆1, … , 𝑆𝑚} ≠ [𝑁], ∑ 𝑥𝑗𝑗∈𝑆𝑖 ≥ 𝑣(𝑆𝑖;𝑃) for at least one non-singleton coalition 𝑆𝑖 ∈ 𝑃 and 

for the finest partition [𝑁], 𝑥𝑖 ≥ 𝑣(𝑖; [𝑁]), 𝑖 = 1, … ,𝑛. 

 

                                                 
10 In keeping with our convention, a coalition in a partition other than the grand coalition is worse-off even if it has 
the same payoff as in the grand coalition. 
11 See e.g. Rajan ((1989) and Hafalir (2007) who labels the 𝛾-core differently as the 𝑠-core. 
12 Actually, the definition implicitly requires that not only 𝑆 but the complementary coalition  𝑁\𝑆 also must be 
worse-off, since a deviation by  𝑁\𝑆 from the grand coalition would result in the binary partition {𝑁\𝑆, 𝑆}. 
13 See Hafalir (2007) for a comprehensive list of alternative core concepts for partition function games. Also, the 
definitions of 𝛾- and 𝛿- cores presently do not correspond to the definitions in Hart and Kurz (1983), as Hart and 
Kurz only consider what happens when one member deviates from one coalition.  
14 See Chander (2007) and Ray and Vohra (1997) for additional criticisms of 𝛼- and 𝛽- cores.  
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     In words, a feasible payoff vector belongs to the strong-core if in every partition at least one 

non-singleton coalition is worse-off and in the finest partition all coalitions (singletons) are 

worse off. The strong-core can be justified on purely technical grounds as a concept which, 

unlike the previous core concepts, makes no ad hoc assumption regarding the partition that may 

form subsequent to a deviation. But it can also be motivated and interpreted independently of 

other concepts: 

     Suppose that a proposal 𝑥 = (𝑥1, … , 𝑥𝑛) is under discussion of the grand coalition and must 

be collectively accepted or rejected. Now suppose that a coalition 𝑆 thinks that it can do better 

than (𝑥1, … , 𝑥𝑛) provided that a particular partition forms and a payoff vector (𝑦1, … ,𝑦𝑛) which 

is feasible for the partition is chosen. The question is: what are the minimum requirements that 

the alternative proposal 𝑦 must fulfil for 𝑆 to succeed in convincing all concerned about it.15 

Clearly, a necessary condition for the alternative proposal 𝑦 to be acceptable to all concerned is 

that no non-singleton coalition 𝑇 must be worse-off, i.e., there must be no non-singleton coalition 

𝑇 such that ∑ 𝑦𝑖𝑖∈𝑇 = 𝑣(𝑇) ≤ ∑ 𝑥𝑖𝑖∈𝑇 .16  To put it differently, a (singleton or non-singleton) 

coalition has an objection to a proposal if there is a partition in which it is better-off and no non-

singleton coalition is worse-off.17 A feasible payoff vector belongs to the strong-core, if no 

coalition has an objection. 

 

Definition 5 The strong-core of a partition function game (𝑁, 𝑣) is the set of all feasible pay-off 

vectors (𝑥1, … , 𝑥𝑛) such that no coalition has an objection.  

  

     Definition 5 is technically equivalent to Definition 4, since it implies that every singleton 

coalition {𝑖} must be worse-off in the finest partition (otherwise, the singleton coalition will have 

an objection) and in all other partitions at least some non-singleton coalition must be worse-off 

(otherwise, a non-singleton coalition in a partition will have an objection). It is also easily seen 

that the strong-core is consistent with the traditional core in the sense that it reduces to the 

                                                 
15 It must convince all concerned, since its worth/payoff depends on what everyone else does.  
16 In view of Theorem 1, this condition also means that the coalitions are farsighted and conservative in the sense 
that a coalition does not deviate from the grand coalition if its deviation could generate a dominance chain which 
terminates at a feasible payoff vector in which some member of the coalition is not better-off.  
17 Thus, on the one hand, an objection is easy to find since an objecting coalition is allowed to assume formation of 
any partition, but, on the other hand, an objection is difficult to find since the payoff of every non-singleton coalition 
in the partition must be higher. 



14 
 

traditional core if the worth of every coalition is independent of the partitions to which it belongs 

and the partition function is adequately represented by a characteristic function. The following 

example illustrates the strong-core. 

Example 1 Let 𝑁 = {1,2,3,4} and 𝑣(𝑆;𝑃) = |𝑆|3(|𝑁| − |𝑃|), 𝑆 ⊂ 𝑁. 

     In this game, 𝑣(𝑁;𝑁) = 192, 𝑣(𝑖; [𝑁]) = 0, and the feasible payoff vector (0,64,64,64) 

belongs to the strong-core. Coalition {1} has no objection to this payoff vector, since a non-

singleton coalition is worse-off in each partition 𝑃 ≠ 𝑁 of which {1} is a member. In particular, 

𝑣(𝑁\1; {1,𝑁\1}) = 54 < 64 + 64 + 64 (since |𝑁\1| = 3 and |𝑃| = 2) and for every two-

player coalition 𝑆 ⊂ {2,3,4}, we have 𝑣(𝑆; {1, 𝑆,𝑁\𝑆\1}) = 8 < 64 + 64 (since |𝑆| = 2 and 

|𝑃| = 3). Finally, coalition {1} itself is worse-off in the finest partition, since its payoff is the 

same as in the grand coalition with feasible payoff vector (0,64,64,64) and, by our convention, a 

coalition is worse off in a partition other than the grand coalition if its payoff is the same as in 

the grand coalition.  

Since in every partition {𝑆, [𝑁\𝑆]} ≠ [𝑁] at most coalition 𝑆 is a non-singleton, a strong-core 

payoff vector is also a 𝛾-core payoff vector. Thus, the strong-core of a partition function game is 

a stronger concept than the 𝛾-core, i.e., strong-core ⊂ 𝛾-core in general. But the two are not 

equivalent as the following example shows.  

 

Example 2 Let 𝑁 = {1,2, … ,5}, 𝑣(𝑁;𝑁) = 13, 𝑣(𝑆; {𝑆, [𝑁\𝑆]}) = 2.4𝑠, 𝑣(𝑆; {𝑆;𝑁\𝑆}) = 2.6𝑠 

for 𝑠 < 4, 𝑣(𝑆; {𝑆;𝑁\𝑆}) = 2.4𝑠 for 𝑠 = 4, for each partition 𝑃 = {𝑖𝑗,𝑘𝑘,𝑚}, 𝑣(𝑖𝑗;𝑃) =

𝑣(𝑘𝑘;𝑃} = 6 and 𝑣(𝑚;𝑃) = 1, for each partition 𝑃 = {𝑖, 𝑗,𝑘, 𝑘𝑚}, 𝑣(𝑖;𝑃) = 1, and for each 

partition 𝑃 = {𝑖, 𝑗,𝑘𝑘𝑚},𝑣(𝑖;𝑃) = 1.  

     In this game, the feasible payoff vector (𝑥1, 𝑥2, … , 𝑥5) = (2.6, 2.6, … , 2.6) belongs to the 𝛾-

core and thus the 𝛾-core is nonempty. However, the strong-core is empty. This is seen as 

follows: A feasible payoff vector (𝑥1, 𝑥2, … , 𝑥5), by definition, belongs to the strong-core only if 

∑ 𝑥𝑖𝑖∈𝑁 = 13, 𝑥𝑖 ≥ 2.4, 𝑖 = 1,2, … ,5, and at least for the partition 𝑃 = {12,34,5}, either 

𝑣(12;𝑃) ≤ 𝑥1 + 𝑥2 or 𝑣(34;𝑃) ≤ 𝑥3 + 𝑥4.  But there can be no such feasible vector, since 

𝑥𝑖 ≥ 2.4, 𝑖 = 1,2, … ,5  and, therefore,  𝑥1 + 𝑥2 = 13 − 𝑥3 − 𝑥4 − 𝑥5 ≤ 5.8 < 𝑣(12;𝑃) and 
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𝑥3 + 𝑥4 = 13 − 𝑥1 − 𝑥2 − 𝑥5 ≤ 5.8 < 𝑣(34;𝑃). Hence, the strong-core is empty, but the 𝛾-core 

is not. Thus, the strong-core is strictly smaller than the 𝛾-core. This is because the 𝛾-core is 

determined only by the payoffs 𝑣(𝑆; {𝑆, [𝑁\𝑆]}, 𝑆 ⊂ 𝑁, and, unlike the strong-core, independent 

of the payoffs 𝑣(𝑆;𝑃), 𝑃 = {𝑖𝑗, 𝑘𝑘,𝑚},𝑆 ∈ 𝑃. Thus, externalities from coalition formation play a 

greater role in the determination of the strong-core.  

     However, in three-player partition function games, as can be easily checked, the strong core is 

generally equal to the 𝛾-core. In four-player games also the strong-core is equal to the 𝛾-core if 

the game is grand-coalition is superadditive. For this reason we chose an example with five 

players to demonstrate that the two are different. The strong core is also comparable to the 𝛿-

core if the externalities are positive or negative.    

         

3. Games with negative or positive externalities 

In most applications, the partition function games can be divided into two separate categories 

(see e.g. Yi, 1997, Maskin, 2003, and Hafalir, 2007): 

     A partition function game (𝑁, 𝑣) has negative (resp. positive) externalities if for every 

𝑃 = {𝑆1, … , 𝑆𝑚} and 𝑆𝑖, 𝑆𝑗 ∈ 𝑃, we have 𝑣(𝑆𝑘;𝑃\{𝑆𝑖, 𝑆𝑗} ∪ {𝑆𝑖 ∪ 𝑆𝑗}) ≤ (resp.≥) 𝑣(𝑆𝑘;𝑃) for 

each 𝑆𝑘 ∈ 𝑃,𝑘 ≠ 𝑖, 𝑗.  

     In words, a partition function game has negative (resp. positive) externalities if a merger 

between two coalitions in a partition decreases (resp. increases) the worths of other coalitions in 

the partition.18  

 

Theorem 3 (a) For partition function games with positive externalities, 𝛿-core ⊂ strong-core ⊂ 

𝛾-core, and (b) for games with negative externalities, 𝛾-core ⊂ strong-core ⊂ 𝛿-core. 

Proof: (a) First, suppose contrary to the assertion that in a game with positive externalities a 𝛿-

core payoff vector (𝑥1, … , 𝑥𝑛) does not belong to the strong-core. Since (𝑥1, … , 𝑥𝑛) belongs to 

the 𝛿-core, for every coalition 𝑆 ⊂ 𝑁 and partition  {𝑆,𝑁\𝑆}, ∑ 𝑥𝑖𝑖∈𝑆 ≥ 𝑣(𝑆; {𝑆,𝑁\𝑆}) ≥

𝑣(𝑆; {𝑆, [𝑁\𝑆]), since externalities are positive. In particular, for 𝑆 = {𝑖}, 𝑥𝑖 ≥ 𝑣(𝑖; [𝑁]), 𝑖 =
                                                 
18 It is easily verified that the externalities in the game in Example 2 are not negative. 
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1, … , 𝑛. Furthermore, since (𝑥1, … , 𝑥𝑛), by supposition, does not belong to the strong-core, there 

must exist a partition 𝑃 = {𝑆1, … , 𝑆𝑚} ≠ [𝑁] such that 𝑣(𝑆𝑖;𝑃) > ∑ 𝑥𝑗𝑗∈𝑆𝑖  for all 𝑆𝑖 ∈ 𝑃 with 

𝑠𝑖 > 1. Then, since externalities are positive, 𝑣(𝑆𝑖;𝑃′) >  ∑ 𝑥𝑗𝑗∈𝑆𝑖 , where 𝑃′ = {𝑆𝑖,𝑁\𝑆𝑖}. But 

this contradicts that (𝑥1, … , 𝑥𝑛) belongs to the 𝛿-core. Hence our supposition is wrong and, 

therefore, every 𝛿-core payoff vector (𝑥1, … , 𝑥𝑛) belongs to the strong-core. This proves 𝛿-core 

⊂ strong-core. 

     Second, if (𝑥1, … , 𝑥𝑛) belongs to the strong-core, then, by definition, ∑ 𝑥𝑖𝑖∈𝑆 ≥ 𝑣(𝑆; [𝑁\𝑆]) 

for all non-singleton coalitions 𝑆 and for the partition 𝑃 = [𝑁], 𝑥𝑖 ≥ 𝑣(𝑖; [𝑁]), 𝑖 = 1, … ,𝑛. Thus, 

every strong-core payoff vector (𝑥1, … , 𝑥𝑛) belongs to the 𝛾-core. This proves strong-core ⊂ 𝛾-

core.   

     (b) First, let (𝑥1, … , 𝑥𝑛) be a 𝛾-core payoff vector of a partition function game (𝑁, 𝑣) with 

negative externalities. We claim that (𝑥1, … , 𝑥𝑛) also belongs to the strong-core. Suppose not. 

Since (𝑥1, … , 𝑥𝑛) belongs to the 𝛾-core, for every partition  {𝑆, [𝑁\𝑆]}, 𝑆 ⊂ 𝑁, ∑ 𝑥𝑖𝑖∈𝑆 ≥

𝑣(𝑆; {𝑆, [𝑁\𝑆]}) and 𝑥𝑖 ≥ 𝑣(𝑖; [𝑁]), 𝑖 = 1, … , 𝑛. Then, since (𝑥1, … , 𝑥𝑛), by supposition, does 

not belong to the strong-core, there must be a partition 𝑃 = {𝑆1, … , 𝑆𝑚} ≠ [𝑁] such that 

𝑣(𝑆𝑖;𝑃) > ∑ 𝑥𝑗𝑗∈𝑆𝑖  for all 𝑆𝑖 ∈ 𝑃 with 𝑠𝑖 > 1. Let 𝑃′ = {𝑆𝑖, [𝑁\𝑆𝑖]} denote the partition in which 

all but coalition 𝑆𝑖 is a singleton. Then, since the game (𝑁, 𝑣) has negative externalities, 

𝑣(𝑆𝑖; {𝑆𝑖, [𝑁\𝑆𝑖]) ≥ 𝑣(𝑆𝑖;𝑃) > ∑ 𝑥𝑗𝑗∈𝑆𝑖 . But this contradicts that (𝑥1, … , 𝑥𝑛) is a 𝛾-core payoff 

vector. Hence, our supposition is wrong and each 𝛾-core payoff vector (𝑥1, … , 𝑥𝑛) also belongs 

to the strong-core. This proves 𝛾-core ⊂ strong-core. 

     Second, suppose contrary to the assertion that for a game with negative externalities a strong 

payoff vector (𝑥1, … , 𝑥𝑛) does not belong to the 𝛿-core. Then, we must have ∑ 𝑥𝑖𝑖∈𝑆 <

𝑣(𝑆; {𝑆,𝑁\𝑆}) for some 𝑆 ⊂ 𝑁. Since externalities are negative, this implies ∑ 𝑥𝑖𝑖∈𝑆 <

𝑣(𝑆; {𝑆, [𝑁\𝑆]}) for some 𝑆 ⊂ 𝑁. But this contradicts that (𝑥1, … , 𝑥𝑛) belongs to the strong-core. 

Thus our supposition is wrong and every strong-core payoff vector (𝑥1, … , 𝑥𝑛) also belongs to 

the 𝛿-core. This proves strong-core ⊂ 𝛿-core.   ■ 

 

     The theorem implies that if externalities are negative, the strong-core is a stronger concept 

than the 𝛿-core but weaker than the 𝛾-core, and if externalities are positive then the strong-core 
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is a stronger concept than the 𝛾-core but weaker than the 𝛿-core. The theorem also implies that if 

externalities are negative, the strong-core is equal to the 𝛾-core. This is seen as follows. 

 

Corollary 1 For partition function games with negative externalities, the strong-core is equal to 

the 𝛾-core.  

Proof: For games with negative externalities, Theorem 3 implies that the 𝛾-core is a subset of the 

strong-core. Since the strong-core, by definition, is a subset of the 𝛾-core in general, it follows 

that the two are equal if externalities are negative.    ■ 

 

     We show by means of examples that the inclusion relationships 𝛿-core ⊂ strong-core and 

strong-core ⊂ 𝛾-core in part (a) of Theorem 3 are strict and in part (b) the inclusion relationship: 

strong-core ⊂ 𝛿-core is also strict. 

Example 3 Let 𝑁 = {1,2,3},𝑣(𝑁;𝑁) = 15,  𝑣(𝑖; {𝑖, 𝑗𝑘}) = 1, 𝑣(𝑗𝑘; {𝑖, 𝑗𝑘}) = 9, 𝑣(1; {1, [𝑁\

1]}) = 𝑣(2; {2, [𝑁\2]}) = 2, and 𝑣(3; {3, [𝑁\3]}) = 9.  

     The game in this example has negative externalities. The strong-core of this game is empty. 

But the 𝛿-core is nonempty, since the feasible payoff vector (5, 5, 5) belongs to the 𝛿-core. It 

follows that for games with negative externalities, the inclusion relationship: strong-core ⊂ 𝛿-

core in part (b) of Theorem 3 is strict. 

Example 4 Let 𝑁 = {1,2,3}, 𝑣(𝑁; {𝑁}) = 24, 𝑣(𝑖; [𝑁]) = 1, 𝑖 = 1,2,3, 𝑣(𝑖; {𝑖, 𝑗𝑘} = 9 for 

{𝑖, 𝑗, 𝑘} = 𝑁, 𝑣(12; {12,3}) = 12, 𝑣(13; {13,2}) = 13, and 𝑣(23; {23,1}) = 14. 19 

     The game in this example has positive externalities. The strong-core is nonempty, since the 

feasible payoff vector (7.5, 8, 8.5) belongs to the strong-core. But the 𝛿-core is empty and, 

therefore, for games with positive externalities, the inclusion relationship: 𝛿-core ⊂ strong-core 

in part (a) of Theorem 3 is strict. 

 

                                                 
19 This example is a minor variation of an example previously considered in Maskin (2003) and de Clippel and 
Serrano (2008).  
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Example 5 Let 𝑁 = {1,2, … ,5}. 𝑣(𝑁;𝑁) = 15, 𝑣(𝑆; {𝑆, [𝑁\𝑆]} = 2.4𝑠, 𝑣(𝑆; {𝑆;𝑁\𝑆}) = 2.9𝑠 

for each partition = {𝑖𝑗,𝑘𝑘,𝑚}, 𝑣(𝑖𝑗;𝑃) = 𝑣(𝑘𝑘;𝑃} = 5.7, 𝑣(𝑚;𝑃) = 2.9, for each partition 

𝑃 = {𝑖, 𝑗,𝑘, 𝑘𝑚}, 𝑣(𝑖;𝑃) = 2.9, and for each partition 𝑃 = {𝑖, 𝑗,𝑘𝑘𝑚},𝑣(𝑖;𝑃) = 2.9.  

     This game has positive externalities. The feasible payoff vector (2.5, 2.5, 2.5, 2.5, 5) belongs 

to the 𝛾-core, but not to the strong-core -- confirming that the inclusion strong-core ⊂ 𝛾-core is 

strict. Furthermore, the feasible payoff vector (2.8, 2.8, 2.8, 2.8, 3.8) belongs to the strong-core, 

but not to the 𝛿-core – confirming that for games with positive externalities, the inclusion 

relations 𝛿-core ⊂ strong-core and strong-core ⊂ 𝛾-core can both be strict at the same time. 

     In summary, the strong-core is in general a stronger concept then the 𝛾-core. For games with 

positive or negative externalities it sits between the 𝛾- and the 𝛿- cores and equal to the 𝛾-core if 

externalities are negative. All inclusion relationships in Theorem 3, except one, are strict. 

 

4. Existence of a farsighted stable set and a non-empty core 

The purpose of this section is to exploit the inclusion relationships between the strong-core and 

the 𝛾- and 𝛿-cores to propose sufficient conditions for the existence of a nonempty strong-core 

and, thus, for the existence of a farsighted stable set, since every strong-core payoff vector, by 

definition, is a farsighted stable set. 

     Let 𝑤𝛾(𝑆) = 𝑣(𝑆; [𝑁\𝑆]), 𝑆 ⊂ 𝑁. Then, 𝑤𝛾 is a restriction of the partition function 𝑣 and the 

𝛾-core of (𝑁, 𝑣) is equal to the core of the induced characteristic function game (𝑁,𝑤𝛾). 

Similarly, the 𝛿-core of (𝑁, 𝑣) is equal to the core of the induced characteristic function game 

(𝑁,𝑤𝛿), where 𝑤𝛿(𝑆) = 𝑣(𝑆; {𝑆,𝑁\𝑆}), 𝑆 ⊂ 𝑁. This means that the 𝛾-core (resp. the 𝛿-core) is 

nonempty if and only if the induced characteristic function 𝑤𝛾 (resp. 𝑤𝛿) is balanced 

(Bondareva, 1963 and Shapley, 1967).20 Though the strong core is not similarly equal to the core 

of an induced characteristic function game, its relationship with the 𝛾- and 𝛿- cores, as 

established in Theorem 3, leads to two immediate sufficient conditions for the existence of a 

nonempty strong-core and thereby a farsighted stable set. 

 
                                                 
20 This result is known as the the Bondareva-Shapley theorem. See Helm (2001) for an elegant application of this 
theorem. 
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Corollary 2 A partition function game (𝑁, 𝑣) admits a non-empty strong-core if it has negative 

(resp. positive) externalities and the induced characteristic function game (𝑁,𝑤𝛾) (resp. 

(𝑁,𝑤𝛿)) is balanced. 

Proof: Since Corollary 1 shows that the strong-core of a partition function game (𝑁, 𝑣) with 

negative externalities is equal to the 𝛾-core, which in turn, as noted above, is equal to the core of 

the induced characteristic function game (𝑁,𝑤𝛾), it follows from the Bondareva-Shapley 

theorem that the strong-core is nonempty if the induced characteristic function game (𝑁,𝑤𝛾) is 

balanced.  

     Since Theorem 3 shows that the 𝛿-core of a partition function game (𝑁, 𝑣) with positive 

externalities is a subset of the strong-core, the strong-core is nonempty if the 𝛿-core is. Since, as 

noted above, the 𝛿-core is equal to the core of the induced characteristic function game (𝑁,𝑤𝛿), 

it follows from the Bondareva-Shapley theorem that the strong-core of a partition function game 

with positive externalities is nonempty if the core of the induced characteristic function game 

(𝑁,𝑤𝛿) is balanced and, therefore, the 𝛿-core is nonempty.   ■ 

 

Corollary 3 A partition function game (𝑁, 𝑣) with negative (resp. positive) externalities admits a  

nonempty strong-core only if the induced characteristic function game (𝑁,𝑤𝛿) (resp. (𝑁,𝑤𝛾)) is 

balanced. 

Proof: If a partition function game has negative externalities, then, by Theorem 3, strong-core 

⊂ 𝛿-core. Therefore, the game admits a nonempty strong-core only if the 𝛿-core is nonempty, 

i.e. the induced characteristic function game �𝑁,𝑤𝛿� is balanced. Similarly, if a partition 

function game has positive externalities, then, by Theorem 3, strong-core ⊂ 𝛾-core and therefore 

it admits a nonempty strong-core only if the 𝛾-core is nonempty, i.e., the induced characteristic 

function game (𝑁,𝑤𝛾) is balanced.   ■ 

 

     Though, as noted above, partition function games in most applications can be classified as 

games with either negative or positive externalities and the existence of a nonempty strong-core 

can be established by using the sufficient conditions in Corollary 2, it might still be useful to 

propose sufficient conditions that can be applied independently of the nature of externalities. 
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Now we propose two such sufficient conditions. We need the following concept which is weaker 

than the familiar concept of a superadditive partition function.21  

 

Definition 6 A partition function game (𝑁, 𝑣) is partially superadditive if for each partition 

𝑃 = {𝑆1, … , 𝑆𝑚} with |𝑆𝑖| ≥ 2, 𝑖 = 1, … , 𝑘, and �𝑆𝑗� = 1, 𝑗 = 𝑘 + 1, … ,𝑚,𝑘 ≤ 𝑚, 

∑ 𝑣(𝑆𝑖;𝑃) ≤𝑘
𝑖=1 𝑣(𝑆;𝑃′) where  𝑃′ = 𝑃\{𝑆1, … , 𝑆𝑘} ∪ {∪𝑖=1𝑘 𝑆𝑖}.  

 

     Partial superadditivity, as the term suggests, is weaker than the familiar notion of 

superadditivity which requires that combining any arbitrary coalitions increases their worth. In 

contrast, partial superadditivity requires that combining only all non-singleton coalitions 

increases their worth. Clearly, partial superadditivity is weaker than superaddivity. It is trivially 

satisfied by all partition function games with three players and also by four-player grand- 

coalition superadditive games. As in the case of characteristic function games (see e.g. Friedman, 

1990), partial superadditivity is neither necessary nor sufficient for a partition function game to 

admit a nonempty strong-core : it is not necessary follows from the fact that the partition 

function games in Theorem 3 are not partially superadditive, but, as shown, admit a nonempty 

strong-core, and it is not sufficient follows from the fact that every three-player partition function 

game is partially superadditive, but not every three-player game admits a nonempty strong-core 

as Example 3 above shows.    

 

Theorem 4 Let (𝑁, 𝑣) be a partially superadditive partition function game. Then the strong-core 

is equal to the 𝛾-core. 

Proof: The strong-core, by definition, is a subset of the 𝛾-core. More specifically, if (𝑥1, … , 𝑥𝑛) 

belongs to the strong-core, then, by definition, ∑ 𝑥𝑖𝑖∈𝑆 ≥ 𝑣(𝑆; [𝑁\𝑆]) for all non-singleton 

coalitions 𝑆 and 𝑥𝑖 ≥ 𝑣(𝑖; [𝑁]), 𝑖 = 1,2, … ,𝑛. Therefore, (𝑥1, … , 𝑥𝑛) also belongs to the 𝛾-core. 

Thus, we only need to prove that each 𝛾-core payoff vector also belongs to the strong-core. 

     Let (𝑥1, … , 𝑥𝑛) be a 𝛾-core payoff vector and let  𝑃 = {𝑆1, … , 𝑆𝑚} be a partition of 𝑁. If 

𝑃 = {𝑆1, … , 𝑆𝑚} ≠ [𝑁], then let |𝑆𝑖| > 1, for 𝑖 = 1, … ,𝑘 and �𝑆𝑗� = 1 for 𝑗 = 𝑘 + 1, … ,𝑚, 𝑘 ≤
                                                 
21See de Clippel and Serrano (2008) for a formal definition of a superadditive partition function. Hafalir (2007) uses 
the term “fully cohesive” in place of “superadditive”.   
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𝑚, and 𝑆 =∪𝑖=1𝑘 𝑆𝑖. Since 𝑣 is partially superadditive, ∑ 𝑣(𝑆𝑖;𝑃) ≤𝑘
𝑖=1 𝑣(𝑆;𝑃′) where 𝑃′ =

𝑃\{𝑆1, … , 𝑆𝑘} ∪ {𝑆}. Clearly, 𝑃′ = {𝑆, [𝑁\𝑆]}. Since (𝑥1, … , 𝑥𝑛) is a 𝛾-core payoff vector, 

∑ 𝑥𝑖𝑖∈𝑆 ≥ 𝑣(𝑆; {𝑆, [𝑁\𝑆]}) = 𝑣(𝑆;𝑃′) ≥ ∑ 𝑣(𝑆𝑖;𝑃).𝑘
𝑖=1  This inequality can be rewritten as 

∑ ∑ 𝑥𝑗𝑗∈𝑆𝑖
𝑘
𝑖=1 ≥ ∑ 𝑣(𝑆𝑖;𝑃)𝑘

𝑖=1  and, therefore, ∑ 𝑥𝑗𝑗∈𝑆𝑖 ≥ 𝑣(𝑆𝑖;𝑃) for at least one 𝑆𝑖 ∈

{𝑆1, … , 𝑆𝑘}  ⊂ 𝑃 with 𝑠𝑖 > 1. If 𝑃 = [𝑁], then since (𝑥1, … , 𝑥𝑛) is a 𝛾-core payoff vector, 

𝑥𝑖 ≥ 𝑣(𝑖; {𝑖, [𝑁\𝑖]}) = 𝑣(𝑖; [𝑁]). This proves that (𝑥1, … , 𝑥𝑛) belongs to the strong-core.   ■ 

  

Corollary 4 The strong-core is equal to the 𝛾-core, if the game has three-players or the game has 

four players and grand-coalition superadditive. 

Proof: Partition function games with three players, by definition, are partially superadditive. Also 

a four-player game is partially superadditive, if it is grand-coalition superadditive.  Hence, 

Theorem 4 implies the corollary.   ■ 

 

Corollary 5 A partition function game (𝑁, 𝑣) admits a non-empty strong-core if it is partially 

superadditive and the induced characteristic function game (𝑁,𝑤𝛾) is balanced.  

Proof: Since Theorem 4 shows that the strong-core of a partially superadditive partition function 

game is equal to the 𝛾-core which in turn, as noted above, is equal to the core of the induced 

characteristic function game (𝑁,𝑤𝛾), the strong-core is nonempty if the core of the characteristic 

function game  (𝑁,𝑤𝛾) is nonempty, i.e., the induced characteristic function game (𝑁,𝑤𝛾) is 

balanced (by the Bondareva-Shapley theorem).    ■ 

   

     Propositions 1 and 2 in Hafalir (2007) show that a convex partition function is superadditive 

and admits a nonempty 𝛾-core. Since a superadditive partition function, by definition, is partially 

superadditive and the 𝛾-core is nonempty only if the induced characteristic function game 

(𝑁,𝑤𝛾) is balanced, by the Bondareva-Shapley theorem, it follows that the sufficient conditions 

in Corollary 5 are weaker than convexity of the partition function assumed in Hafalir (2007) for 

proving the existence of a nonempty 𝛾-core. 
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     Convexity of a characteristic function game is known to be a sufficient condition for the game 

to admit a nonempty core (Shapley, 1971). We show that convexity of a partition function game 

is similarly sufficient for existence of a nonempty strong-core. 

 

Corollary 6 A convex partition function game (𝑁, 𝑣) admits a nonempty strong-core. 

Proof: First, if the partition function is convex, then it is superadditive (Hafalir, 2007: 

Proposition 1) and, therefore, the partition function is partially superadditive. Second, if the 

partition function game is convex, the induced characteristic function game (𝑁,𝑤𝛾) is convex 

(Hafalir, 2007: Proposition 2) and, therefore, it admits a nonempty core (Shapley, 1971) and, 

therefore, balanced, by the Bondareva-Shapley theorem. The proof now follows from Corollary 

5, since a convex partition function game (𝑁, 𝑣) is partially superadditive and the induced 

characteristic function game (𝑁,𝑤𝛾) is balanced.   ■ 

 

     Since the strong-core is a subset of the 𝛾-core in general, Corollary 6 is a stronger result then 

Proposition 2 in Hafalir (2007) which shows that the 𝛾-core is nonempty if the partition function 

is convex. Since, as noted, the sufficient conditions in Corollary 5 are weaker than convexity of 

the partition function, Corollary 5 proves a stronger result under weaker sufficient conditions 

than those in Proposition 2 in Hafalir (2007).  

    Theorem 3 and its corollaries imply that in partially superadditive partition function games a 

significant amount of information is strategically redundant. This is especially true in the case of 

three-player partition function games, since they are always partially superadditive, and also in 

the case of four-player grand-coalition superadditive games. However, for games with five or 

more players, as Example 2 illustrates, the same information may not be redundant.   

 

5. Non-cooperative foundations of farsighted stable sets 

 In this section, we assume that the members of a coalition in a partition may choose to not give 

effect to their coalition and in that case their payoffs are the same as in a partition in which each 

member of the coalition is a singleton and all other coalitions in the partition are the same. The 

motivation for this assumption comes from the fact that for partition function games which are 
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derived from a strategic game (Ichiishi, 1981, Ray and Vohra, 1997), not giving effect to a 

coalition in a partition is equivalent to the members of the coalition to deliberately choose the 

same strategies that they would if they were all singletons, given the strategies of the other 

coalitions in the partition.22  

     We also assume, without loss of generality, that 𝑣(𝑆;𝑃) > 0 for all partitions 𝑃 and all 

coalitions 𝑆 ∈ 𝑃. Though our analysis is independent of how a coalition in a partition divides its 

worth, but to be concrete we assume that each coalition in a partition divides its worth 

proportionally to a feasible payoff vector (𝑥1∗, … , 𝑥𝑛∗) in the sense that for each partition 𝑃 =

{𝑆1, … , 𝑆𝑚} and each coalition 𝑆𝑖 ∈ 𝑃, the payoff of each player 𝑗 in coalition 𝑆𝑖 is 𝑥𝑗 ≡ 𝑥𝑗∗ ×

[𝑣(𝑆𝑖;𝑃)/∑ 𝑥𝑘∗𝑘∈𝑆𝑖 ]. It will be made clear below that the analysis does not depend on this 

assumption and it holds for any arbitrary division of each coalition’s worth. 

 

4.1 An infinitely repeated game  

     We show that every farsighted stable set can be supported as an equilibrium outcome of a 

non-cooperative game. This game, to be called the infinitely repeated game or simply the 

repeated game, consists of infinitely repeated two-stages. The first stage of the two-stages begins 

from the finest partition [𝑁] as the status quo and each player announces either 0 or some 

positive integer from 1 to 𝑛. In the second stage of the two-stages, all those players who 

announced the same positive integer in the first stage form a coalition.23 All those players who 

announced 0 remain singletons.24 If the outcome of the second stage is not the finest partition, 

the game ends and the partition formed remains formed forever.25 But if the outcome of the 

second stage is the finest partition -- as in the status quo from which the game began in the first 

                                                 
22 See Chander (2007) for an actual example of a partition function derived from a strategic game and what not 
giving effect to a coalition in a partition means in terms of actions/strategies of the members of the coalition. 
23 Thus the players can form any partition by announcing appropriate numbers; and no partition, other than the 
finest, can be formed without the consent of all players, since any player can unilaterally effect a change in the 
partition to be formed by suitably changing its announcement. In contrast, formation of the finest partition with the 
announcement of 0 by every player cannot be unilaterally changed by a player, since a non-singleton coalition can 
be formed only if at least two players announce the same positive integer.    
24 Thus a player can choose to stay alone by simply announcing 0 and cannot be forced to form a coalition with any 
other player or players.   
25 This is analogous to the rule in the infinite bargaining game of alternating offers (Rubinstein, 1982) in which the 
game ends if the players agree to a split of the pie, but continues, possibly ad infinitum, if they disagree. It is also the 
same as the rule that formation of a non-trivial partition is irreversible (e.g. Compte and Jehiel, 2010). 
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place -- the two-stages are repeated, possibly ad infinitum, until some partition other than the 

finest is formed in a future round.26 In either case, the players receive payoffs in each period 

proportionally to a feasible payoff vector (𝑥1∗, … , 𝑥𝑛∗).  

It may be noted from the description above that the repeated game allows the players to form 

any partition other than the finest and end the game; it does not rule out a priori any partition as 

a possible equilibrium outcome. The trivial/finest partition [𝑁] can be an outcome of the second 

stage of the two-stages if i) all players announce zero in the first stage of the two-stages, ii) no 

two players announce the same positive integers in the first stage of the two-stages and iii) two 

or more players announce the same positive integers, but decide in the second stage of the two-

stages to not give effect to their coalitions. Since, as noted, a partition other than the finest can be 

formed only with the consent of all players, formation of a partition other than the finest is to be 

interpreted as an agreement among all players. In contrast, formation of the finest partition is to 

be interpreted as a disagreement. 

To describe the repeated game in more concrete terms, visualize the following scenario: All 

players meet in a negotiating room to decide on the formation of a partition knowing in advance 

what their payoffs will be in each partition. They may form a partition other than the finest or 

they may all decide to stay alone, i.e., form the trivial partition. If the players agree to form a 

non-trivial partition, the meeting ends, the players receive per-period payoffs according to a pre-

specified rule, and all leave the room. But if the players do not agree to form a non-trivial 

partition, the meeting and negotiations continue and nobody leaves the room until the players 

agree to form a non-trivial partition. 

We assume that the payoffs are discounted and the discount factor 𝛿 < 1 is sufficiently large. 

Since the structure of the continuation game is exactly the same as the original game, we restrict 

ourselves to equilibria in stationary strategies of the repeated game. In fact, since the game ends 

as soon as a non-trivial partition is formed, only equilibria in stationary strategies are relevant. 

Accordingly, we characterize the equilibria of the repeated game by comparing only the per-

period payoffs of the players. We do this first for a farsighted stable set consisting of a feasible 

                                                 
26 Since the game starts from the finest partition, not allowing repetition of the two-stages if the outcome of the 
second stage is again the finest partition would be inconsistent.  
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payoff vector (𝑥1∗, … , 𝑥𝑛∗) is interior in the sense that 𝑥𝑖∗ > 𝑣(𝑖; [𝑁]), 𝑖 = 1, … ,𝑛, and for each 

partition 𝑃 = {𝑆1, … , 𝑆𝑚) ≠ [𝑁], {𝑁}, ∑ 𝑥𝑗∗𝑗∈𝑆𝑖 > 𝑣(𝑆𝑖;𝑃) for at least some 𝑆𝑖 ∈ 𝑃 with |𝑆𝑖| ≥

2, 27 and then note that the same result also holds for feasible payoff vectors which are not 

interior, if as per our convention the players strictly prefer to be members of the grand coalition 

than of a coalition in a partition even if their payoffs are the same. 

 

Theorem 5 Given a partition function game (𝑁, 𝑣), a farsighted stable set consisting of an 

interior feasible payoff vector (𝑥1∗, … , 𝑥𝑛∗) is an equilibrium outcome of the repeated game if the 

worth of each coalition is divided proportionally to (𝑥1∗, … , 𝑥𝑛∗) and the discount factor 𝛿 is 

sufficiently close to 1. 

Proof: Since 𝑣(𝑆;𝑃) > 0 for every partition 𝑃 and all coalitions 𝑆 ∈ 𝑃, we have 𝑥𝑖∗ > 0, 𝑖 =

1, … , 𝑛. We show that in the repeated game, 

(i) not to give effect to a coalition if it does not include all players is an equilibrium 

strategy of every member of the coalition, and 

(ii) the grand coalition is the unique equilibrium outcome and the players’ per-period 

equilibrium payoffs are equal to (𝑥1∗, … , 𝑥𝑛∗) .        

     It is convenient to prove the theorem separately for 𝑛 = 3 and  𝑛 > 3.   

     Case 𝑛 = 3: We show that (i) implies (ii) and then prove that the strategies in (i) are indeed 

equilibrium strategies, since they imply (ii). Given the strategies in (i) and players' responses to 

them, we derive a reduced form of the infinitely repeated game as follows:  

Given the strategies in (i), let (𝑤1, … ,𝑤𝑛) denote the players’ undiscounted per-period 

stationary strategies equilibrium payoffs in the repeated game. (a) If in some period, all players 

do not announce the same positive integer or some player announces 𝑖 = 0, then, as the strategies 

in (i) require, no non-singleton coalition is given effect by the players and the outcome is the 

finest partition implying undiscounted per period payoffs of (𝑤1, … ,𝑤𝑛), since the continuation 

game is identical to the original game. (b) If in some period, all players announce the same 

                                                 
27 It may be noted that the feasible payoff vector with equal shares in the games in Theorem 2 is interior. 
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positive integer, then the outcome is the grand coalition, the game ends, and the players’ 

undiscounted per-period payoffs are (𝑥1∗, 𝑥2∗, 𝑥3∗).28 

     In three-player games, there is no loss of generality if each player chooses only between 

strategies 𝑖 = 1 and 𝑖 = 0, since even with these restricted strategy sets the players can form all 

possible partitions by announcing either 1 or 0. Then, given the strategies in (i), the payoff 

matrix of the repeated game in reduced form is: 

 

Player 3 

                                     ---------------------------------------------------------------------- 
                                                      𝑖 = 1                                             𝑖 = 0                         
                                       ---------------------                              ----------------------        
                                                Player 2                                                       Player 2 

                                                  --------------------                                           ----------------------       

                                      𝑖 = 1                   𝑖 = 0                       𝑖 = 1              𝑖 = 0         
                   

            

                𝑖 = 1     
  Player 1 

                𝑖 = 0 
 
      

     A solution to this reduced game can be found by considering a mixed strategy Nash 

equilibrium. Let 𝑝1,𝑝2,𝑝3 be the probabilities assigned by the three players to the strategy 𝑖 = 1. 

Then, in equilibrium each player, say 1, should be indifferent between strategies 𝑖 = 0 and 𝑖 = 1.  

Therefore, a mixed strategy equilibrium must be such that 𝑤1 = 𝑝2𝑝3𝛿𝑤1 + (1 − 𝑝2𝑝3)𝛿𝑤1 = 

𝑝2𝑝3𝑥1∗ + (1 − 𝑝2𝑝3)𝛿𝑤1. If 𝑥1∗ > 𝛿𝑤1, then the pure strategy 𝑖 = 1 is the unique dominant 

strategy and the resulting payoff is 𝑤1 = 𝑥1∗,  consistent with the inequality 𝑥1∗ > 𝛿𝑤1. Thus the 

pure strategy 𝑖 = 1 for each player is the unique dominant equilibrium strategy, i.e., the reduced 

                                                 
28 It may be noted that if the grand coalition is indeed an equilibrium outcome of the repeated game, then it will 
occur without delay. That is because the per-period payoffs of the players would be otherwise lower in the periods 
preceding the period in which the grand coalition is formed, since 𝑥𝑖

∗ > 𝑣(𝑖; [𝑁]). 

  𝑥1∗, 𝑥2∗, 𝑥3∗ 

 

𝛿𝑤1,𝛿𝑤2, 𝛿𝑤3 

 

𝛿𝑤1,𝛿𝑤2, 𝛿𝑤3 

 

𝛿𝑤1,𝛿𝑤2, 𝛿𝑤3 

 

𝛿𝑤1,𝛿𝑤2, 𝛿𝑤3 

 

𝛿𝑤1, 𝛿𝑤2,𝛿𝑤3 

 

𝛿𝑤1,𝛿𝑤2, 𝛿𝑤3 

 

𝛿𝑤1, 𝛿𝑤2,𝛿𝑤3 
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game admits a unique dominant strategies equilibrium in pure strategies, the grand coalition is 

the unique equilibrium outcome, and the players’ undiscounted per-period equilibrium payoffs 

are (𝑥1∗, 𝑥2∗, 𝑥3∗). 

Now we prove that the strategies in (i) are indeed equilibrium strategies, since they imply (ii). 

Suppose in some period, two players, say 2 and 3, announce 𝑖 = 1, but player 1 announces 𝑖 = 0. 

Suppose further that in Stage 2, players 2 and 3, contrary to the strategies in (i), give effect to 

their coalition. Such a deviation from the strategies in (i) would lead to payoffs of 

� 𝑥2∗

𝑥2∗+𝑥3∗
� 𝑣(23; {23,1}) < 𝑥2∗ and � 𝑥3∗

𝑥2∗+𝑥3∗
� 𝑣(23; {23,1}) < 𝑥3∗ for players 2 and 3 (resp.), since the 

payoffs are proportional to (𝑥1∗, … , 𝑥𝑛∗) and 𝑥2∗ + 𝑥3∗ > 𝑣(23; {23,1}) as (𝑥1∗, 𝑥2∗, 𝑥3∗) forms a 

farsighted stable set and is in the interior.29 However, if players 2 and 3 adhere to the strategies 

in (i) and thus do not give effect to their coalition, then the game will be repeated and their 

payoffs, as shown, will be 𝛿𝑥2∗ and 𝛿𝑥3∗,  which for 𝛿 sufficiently close to 1 are higher than what 

their payoffs would be if they give effect to their coalition and thereby end the game. Thus, it is 

ex post optimal for both players 2 and 3 to not give effect to their coalition, which player 1 must 

take into account when deciding its strategy.30This proves (i) as well. 

Case 𝑛 > 3: The proof for (i) implies (ii) is identical to that for 𝑛 = 3. Thus, we only need to 

prove that (ii)  implies (i). Suppose contrary to the assertion that some players form a non-

singleton coalition or coalitions other than the grand coalition and give effect to them. Let 

𝑃 = {𝑆1, … , 𝑆𝑚} ≠ [𝑁], {𝑁} be the resulting partition such that |𝑆1| > 1 and �𝑆𝑗� = 1, 𝑗 = 2, … ,𝑛. 

Then, since the vector (𝑥1∗, … , 𝑥𝑛∗) forms a farsighted stable set and in the interior, 𝑣(𝑆1;𝑃) <

∑ 𝑥𝑗∗𝑗∈𝑆1  and the payoff of each 𝑗 ∈ 𝑆1 ∈ 𝑃 is equal to  
𝑥𝑗
∗

∑ 𝑥𝑖
∗

𝑖∈𝑆1
 𝑣(𝑆1;𝑃) < 𝑥𝑗∗. But if the members 

of 𝑆1 were to not  give effect to their coalition, then the resulting partition would be the finest, 

the game will be repeated and result in payoffs equal to 𝛿𝑥𝑗∗ for each 𝑗 ∈ 𝑆1 which for 𝛿 

sufficiently close to 1 are higher . Therefore, dissolving 𝑆1 is an equilibrium strategy for each 

member of 𝑆1. Next, let 𝑃 be such that |𝑆1||𝑆2| > 1 and �𝑆𝑗� = 1, 𝑗 = 3, … ,𝑛. Then, since 

                                                 
29 To minimize notation, we denote coalitions {𝑖, 𝑗} and {𝑘} simply by 𝑖𝑗 and 𝑘, respectively. 
30 The argument here is not that players 2 and 3 can force player 1 to merge with them by threatening to not give 
effect to their coalition (and thus deny him the opportunity to free ride), but rather that given their strategies in (i) 
and the players’ responses to it, such an action is ex post optimal for players 2 and 3, i.e., a subgame-perfect 
equilibrium strategy. 
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(𝑥1∗, … , 𝑥𝑛∗) forms a farsighted stable set and in the interior, either 𝑣(𝑆1;𝑃) < ∑ 𝑥𝑗∗𝑗∈𝑆1  or 

𝑣(𝑆2;𝑃) < ∑ 𝑥𝑗∗𝑗∈𝑆2  or both. Without loss of generality, let 𝑣(𝑆2;𝑃) < ∑ 𝑥𝑗∗𝑗∈𝑆2 . Then the payoff 

of each 𝑗 ∈ 𝑆2 ∈ 𝑃 is 
𝑥𝑗
∗

∑ 𝑥𝑖
∗

𝑖∈𝑆2
 𝑣(𝑆2;𝑃) < 𝑥𝑗∗. If the members of coalition 𝑆2 were to not give 

effect to their coalition, then 𝑆1 will be the only non-singleton coalition in the resulting partition 

and, as shown, to not give effect to 𝑆1 is an equilibrium strategy for each of its members. Thus, if 

the members of 𝑆2 do not give effect to their coalition then the members of 𝑆1 will also not give 

effect to their coalition resulting in the finest partition, repetition of the game, and the 

equilibrium payoff of 𝛿𝑥𝑗∗ for each 𝑗 ∈ 𝑆2 ∈ 𝑃 which is higher than  
𝑥𝑗
∗

∑ 𝑥𝑖
∗

𝑖∈𝑆2
 𝑣(𝑆2;𝑃) if 𝛿 is 

sufficiently close to 1. Similarly, let 𝑃 = {𝑆1, … , 𝑆𝑚} be such that |𝑆1|, … , |𝑆𝑘| > 1 and �𝑆𝑗� =

1, 𝑗 = 𝑘 + 1, … ,𝑛.  Then, the members of 𝑆𝑘 will not give effect to their coalition, members of 

𝑆𝑘−1 will not give effect to their coalition, and so on … resulting in the finest partition, repetition 

of the game and equilibrium payoffs which are higher for every member of the non-singleton 

coalitions if 𝛿 sufficiently close to 1. This proves that (ii) implies (i) as it is ex post optimal for 

every member of each non-singleton coalition in every partition 𝑃 ≠ [𝑁], {𝑁} to not give effect 

to their coalition.   ∎ 

 

     It is easily checked that the theorem also holds if the payoffs are not discounted (i.e. 𝛿 = 1), 

but beside the grand coalition, the finest partition is also an equilibrium outcome. The same is 

also true if the farsighted stable set consists of a feasible payoff vector which is not interior but 

as per our convention the players strictly prefer to be members of the grand coalition than of a 

coalition in a partition even if their payoffs are the same.  However, this additional equilibrium is 

Pareto dominated and, thus, the grand coalition is the unique equilibrium outcome in these cases 

too if we assume that the players never play a Pareto dominated equilibrium. The theorem also 

holds for any arbitrary division of the worth of each coalitions in a partition, since at least one 

member in at least one non-singleton coalition in every non-trivial partition other than the grand 

coalition is worse-off. Such a player can be eventually better-off if it leaves the coalition and 

forms a singleton as then there will be another member of another coalition who would be 

similarly worse-off and can be eventually better-off if it leaves the coalition and this process, as 
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in a dominance chain in Section 2.1, will continue until all non-singleton coalitions disintegrate 

and the finest partition is formed and the game is repeated. 

The theorem implies that the grand coalition is the unique equilibrium outcome of the 

repeated game. In contrast, Ray and Vohra (1997) and Yi (1997) show that if the game is not 

repeated, then the grand coalition is not an equilibrium outcome. The intuition for their 

contrasting result is as follows: If the two-stages in, say, a three-player game are to be played 

only once, then for a singleton coalition 𝑖 considering a unilateral deviation from the grand 

coalition, the strategically relevant coalition structure is {𝑖, 𝑗𝑘}, and not the finest partition 

{𝑖, 𝑗, 𝑘}, since the strategies of the other two players 𝑗 and 𝑘 will not aim at the finest partition if 

the two-stages are not to be repeated and their  payoffs in the partition {𝑖, 𝑗𝑘} are higher than in 

the finest partition {𝑖, 𝑗,𝑘}. Therefore, if the payoff of a singleton coalition 𝑖 in the partition 

{𝑖, 𝑗𝑘} is higher than in the farsighted stable set, then 𝑖 would gain by leaving the grand coalition 

as that would result in formation of the partition {𝑖, 𝑗𝑘} and not the finest partition {𝑖, 𝑗,𝑘}.Thus, 

the three coalition structures with a pair and a singleton and not the grand coalition would be the 

equilibrium outcomes if the game is limited to a single play of the two-stages.  

 

6. Conclusion 

 We have motivated and introduced two related concepts for partition function games, namely: 

the farsighted stable sets and the strong-core. The proposed farsighted stable sets respect both 

“feasibility” and “coalitional sovereignty” and the strong-core is nicely related to the previous 

core concepts for partition function games, but unlike them does not arbitrarily assume formation 

of a specific partition subsequent to a deviation from the grand coalition. Thus, the strong-core 

seems to settle a long-standing debate on which core concept to use in applications of partition 

function games. The two concepts are closely related in that every farsighted stable set consists 

of a single strong-core payoff vector and each strong-core payoff vector forms a farsighted stable 

set. This suggests that the strong-core has powerful farsighted stability property.  

     There are intriguing similarities, as well as some contrasts, with the farsighted stable sets and 

the core for characteristic function games in that the farsighted stable sets for a partition function 

game, much like the farsighted stable sets for characteristic function games in Ray and Vohra 
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(2014), are singletons, respect feasibility and coalitional sovereignty, and subsets of the core. 

The strong-core reduces to the traditional core if the worth of every coalition is independent of 

the partition to which it belongs and the partition function is adequately represented by a 

characteristic function. In contrast, the Harsanyi stable sets (Hatsanyi, 1974) for characteristic 

function games, though also singletons, do not respect coalitional sovereignty and are disjoint 

from the core (see Ray and Vohra, 2014, p.2-3).  

     We showed that the strong core is generally stronger than the 𝛾-core and also comparable to 

the 𝛿-core if a game has positive or negative externalities. More specifically, we showed that for 

partition function games with positive externalities, 𝛿-core ⊂ strong-core ⊂ 𝛾-core and for 

games with negative externalities, 𝛾-core ⊂ strong-core ⊂ 𝛿-core, and these inclusions, except 

one, are strict. Similarly, the strong-core is equal to the 𝛾-core if the game is partially 

superadditive. On the one hand, these results lead to sufficient conditions for the existence of a 

nonempty strong core as well as a farsighted stable set and, on the other hand, they imply that 

significant amounts of information in partition function games with three or four players as well 

as those with negative externalities may be redundant. But as Example 2 shows that is not true in 

games with five or more players and positive externalities. 

The paper also contributes to the “Nash program” for cooperative games in that it was shown 

that the farsighted stable sets and the strong-core payoff vectors can be supported as equilibrium 

outcomes of an intuitive infinitely repeated game. The fact that the game is repeated infinitely 

many times plays a crucial role for the result to hold. Finally, a forthcoming paper proves that an 

oligopoly with more than four firms admits a nonempty strong-core which is a subset of the 𝛾-

core, since the corresponding partition function, though grand-coalition superadditive, is neither 

partially superadditive nor exhibits negative externalities.31  

 
 
 
 
 
                                       

                                                 
31 Rajan (1989) proves that if the number of firms in an oligopoly is less than or equal to four, then the 𝛾-core, and 
thus the strong core, is nonempty. 
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